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Understanding how strongly correlated two-dimensional (2D) systems can give rise to unconven-
tional superconductivity with high critical temperatures is one of the major unsolved problems in
condensed matter physics. Ultracold 2D Fermi gases have emerged as clean and controllable model
systems to study the interplay of strong correlations and reduced dimensionality, but direct evidence
of superfluidity in these systems has been missing. Here, we demonstrate superfluidity in an ultra-
cold 2D Fermi gas by moving a periodic potential through the system and observing no dissipation
below a critical velocity vc. We measure vc as a function of interaction strength and find a maximum
in the crossover regime between bosonic and fermionic superfluidity. Our measurement establishes
ultracold Fermi gases as a powerful tool for studying the influence of reduced dimensionality on
strongly correlated superfluids.

Reducing the dimensionality of a quantum system from
three to two dimensions significantly modifies its physical
properties. One striking difference is the increased role
of fluctuations in low-dimensional systems, which pre-
vents long range phase coherence [1] and makes 2D the
marginal dimension for the existence of superfluidity [2].
Hence it is quite surprising that in all known ambient-
pressure high-Tc materials superconductivity occurs in
two-dimensional structures, such as the copper-oxide lay-
ers in cuprates. Three decades after their discovery, the
mechanism giving rise to superconductivity and the role
of the reduced dimensionality in these systems are still
under debate [3].

Over the last years, ultracold 2D Fermi gases [4–9]
have been established as model systems that can provide
insight into the interplay of strong correlations and re-
duced dimensionality [10–15]. Recent experiments have
observed pair condensation [16] and phase coherence [17]
at low temperatures. While these results suggest the
presence of a superfluid, this has not been directly ob-
served so far.

In this work, we obtain definitive evidence for super-
fluidity in a 2D Fermi gas by observing frictionless flow
below a critical velocity vc. We study the temperature-
dependence of the critical velocity and observe the phase
transition from the superfluid to the normal state at a
critical temperature Tc. Finally, we measure the crit-
ical velocity as a function of interaction strength and
show that the 2D Fermi gas is superfluid throughout the
BEC-BCS crossover from deeply bound dimers to weakly
bound Cooper pairs.

For our experiments, we use a Fermi gas of N ≈ 6000
ultracold 6Li atoms in the lowest two hyperfine states,
trapped in a box potential [18]. The gas is tightly con-
fined along the z-direction with a level spacing ~ωz ≈
h · 9.2 kHz that is larger than the thermal energy kBT
and the chemical potiential µ of the gas, which places
our system in the quasi-2D regime [19].

FIG. 1. Measuring the critical velocity of a two-
dimensional Fermi gas. (A) Sketch of the trapping po-
tential. A 2D Fermi gas is trapped in a box potential (blue)
projected through a high-resolution microscope objective. A
periodic potential (red) can be moved through the gas at a
variable velocity v. (B) Sketch of the Bogoliubov dispersion
of a superfluid Bose gas. At small momentum transfer ~q,
excitations are phononic and the dispersion has a linear slope
given by the speed of sound vs, while for higher momentum
transfers single-particle excitations become dominant and the
dispersion becomes quadratic. (C) Response r(v) of a system
at an interaction strength of ln(kFa2D) = −0.8 to a moving
optical lattice with wavevector k0 ≈ 0.15 kF. While no dissi-
pation occurs at low lattice velocities, there is a sharp increase
in the response of the system above a critical velocity vc. Note
that the moving lattice probes the dispersion relation of the
system along a vertical line, as visualized by the red arrow in
(B). This results in a decrease of the response at high lattice
velocities. The critical velocity is extracted by a fit (red solid
line) according to r(v) = Amax(0, v2 − v2c ) [20].

To show that the system is superfluid, we verify that it
fulfills the Landau criterion [21–26], which states that the
dispersion ε(p) of a superfluid does not allow for the cre-

ar
X

iv
:2

00
5.

07
60

7v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 1

5 
M

ay
 2

02
0



2

ation of excitations at velocities smaller than a nonzero
critical velocity vc = minp(

ε(p)
p ). Thus, an impurity mov-

ing through a superfluid with a velocity v < vc creates
no excitations, and the superfluid flows around it with-
out friction. We create such an impurity by interfering
two red-detuned laser beams in the center of the trap, re-
sulting in a sinusoidal potential whose wavelength can be
tuned by adjusting the crossing angle of the two beams.
A frequency detuning ∆ν between the two laser beams
causes this optical lattice to move at a constant speed
v = L∆ν, where L is the spacing between two maxima
of the periodic potential.

To measure the critical velocity in our system, we move
the optical lattice through the gas at different velocities
and observe the response of the system by measuring its
momentum distribution n(k). To obtain n(k), we ramp
the interaction strength to a value of ln(kFa2D) = −2.8,
where kF =

√
4πn = mvF/~ is the Fermi wavevector of

a gas with density n per spin state and a2D is the 2D
scattering length [27]. At this interaction strength, the
system is deep in the BEC regime, where the gas con-
sists of weakly interacting dimers and it is straightfor-
ward to measure n(k) using matter wave focusing [28].
As the occupation of the lowest momentum modes de-
creases with increasing temperature, we define the re-
sponse r(v) = (n(k = 0, v = 0)/n(k = 0, v)) − 1 as a
robust measure for the amount of energy that was im-
parted to the system by the moving potential [19].

A typical measurement of the response of the system
as a function of lattice velocity is shown in Fig 1 C. We
observe that as the velocity of the optical lattice is in-
creased, the gas is unaffected until a critical velocity is
reached and a sharp onset of dissipation occurs. In con-
trast to previous experiments [22–25], we observe that
the response decreases again at higher velocities. This is
due to the fact that the optical lattice transfers a specific
momentum ~k0 = ~2π/L to the superfluid, whereas the
impurity in Landau’s gedankenexperiment can excite the
system at all momenta. Therefore, a moving optical lat-
tice with varying velocity probes the dispersion relation
of the gas on a vertical line of constant p = ~k0. This is
visualized in Fig. 1 B.

We hence perform measurements at different spacings
L of the periodic potential, and thereby determine the re-
sponse r(v, k0) as a function of both the lattice velocity
v and the lattice wavevector k0. In bosonic superfluids,
the lowest velocity at which excitations can be created is
found at small wavevectors. These long-wavelength ex-
citations are phononic modes that are excited by an ob-
stacle moving at a velocity close to the speed of sound of
the system. In BCS superfluids, phononic excitations at
low k0 can still be created, but the lowest onset velocity
is found at k0 ≈ 2 kF. This is due to pair breaking exci-
tations, which can occur at all momenta but according to
BCS theory can be excited with the lowest velocites at a
wavevector of 2 kF. Our measurements in the BEC (see

FIG. 2. Phononic and pair breaking excitations in a
2D Fermi gas. (A) Response of a gas in the BEC regime
to excitations with lattice wavevector k0 and velocity v. For
small wavevectors, the moving lattice excites phononic modes
at the sound velocity vs. For larger wavevectors, the peak in
the heating rate moves to higher velocities as the dispersion
deviates from the linear phononic branch and single-particle
excitations become dominant. (B) In the BCS regime, we
observe a continuum of pair breaking excitations with a min-
imum of the onset velocity at k0 = 2 kF. In both regimes, the
heating rate is negligible for excitations that move slower than
the critical velocity (red dashed lines, taken from Fig. 4 C).
To enhance the visibility of weaker excitations, each column
has been linearly rescaled to range from 0 to 1.

Fig. 2 A) and BCS (see Fig. 2 B) regimes directly show
this difference in the excitation spectra of bosonic and
fermionic superfluids. For both interaction strengths, we
clearly observe a critical velocity below which no excita-
tions are created, which constitutes conclusive evidence
of superfluidity.

Having established a measurement of the critical ve-
locity, we now go on to determine the critical tempera-
ture Tc of a gas in the BEC regime (ln(kFa2D) = −2.9).
We achieve this by preparing gases at different temper-
atures [19] and measuring the response of the system to
the moving periodic potential. With increasing tempera-
ture, we expect the phononic branch of the dispersion to
broaden, and eventually become broad enough that ex-
citations at arbitrarily small velocities can heat the gas.
This causes the critical velocity to decrease with tem-
perature and vanish at T = Tc. Measurements of the



3

FIG. 3. Observing the superfluid phase transition.
(A,B,C) We determine the critical temperature of a gas in the
BEC regime (ln(kFa2D) = −2.9) by measuring the response
of the system to a moving periodic potential at different tem-
peratures. For a cold gas (A), the absence of dissipation at
low velocities is followed by a sharp rise in the response of
the gas at the critical velocity. As the temperature increases,
the critical velocity is reduced (B) until dissipation occurs at
arbitrarily small velocities once the temperature is above Tc

(C). The red solid lines are fits of the response r(v) according
to r(v) = Amax(C, v2 − v2c ). The blue dashed lines show fits
where vc is fixed to 0. (D) Difference ∆R̄2 = R̄2

vc>0−R̄2
vc=0 of

the adjusted coefficients of determination of the two fits. For
low temperature gases, allowing a finite critical velocity sig-
nificantly improves the fit beyond the trivial effect of adding
a free parameter and hence ∆R̄2 > 0. In contrast, this is
not the case for high temperature systems above Tc. We can
therefore estimate Tc by extracting the temperature at which
a nonzero vc no longer improves the fit. For the measurement
shown in this figure, we find that the phase transition to the
normal state occurs at Tc/TF = 0.094 ± 0.004stat ± 0.02sys

[19]. The errorbars show 1σ confidence intervals obtained by
bootstrapping.

response of the system for three different initial temper-
atures are shown in Fig. 3 A-C. While the sharp on-
set of dissipation at the critical velocity is clearly visi-
ble in the colder data, it disappears at higher temper-
atures, signalling the phase transition from a superfluid
to a normal state. We extract a critical temperature of
Tc/TF = 0.094± 0.004stat ± 0.02sys [19], which is in very
good agreement with theoretical predictions [8] and the
observed onset of pair condensation [16][29].

In our final set of measurements, we study the evolu-
tion of the critical velocity in the crossover from a con-
densate of bosonic dimers to a BCS superfluid. As shown
in Fig. 2, the lowest-lying excitations on the BEC side
of the resonance are sound modes at small values of k0,
while for a BCS superfluid the minimum velocity for pair
breaking occurs for excitations around 2 kF. Hence, we
measure the interaction dependence of the response r(v)
at two different lattice wavevectors of k0 ≈ 0.3 kF and
k0 ≈ 2 kF. The results are shown in Fig. 4 A and B.

For a lattice wavevector of k0 ≈ 0.3 kF, we clearly ob-

FIG. 4. Interaction dependence of the critical velocity.
(A,B) Response of a 2D Fermi gas to a moving lattice with
wavevectors k0 ≈ 0.3 kF (A) and k0 ≈ 2 kF (B) at different
interaction strengths. In the BEC regime (ln(kFa2D) < −1),
we observe a well defined excitation that corresponds to a
sound mode for k0 ≈ 0.3 kF and single particle excitations for
k0 ≈ 2 kF. When going to the BCS side of the crossover, the
peak broadens into a continuum of pair breaking excitations.
To enhance the visibility of weaker excitations, each column
has been linearly rescaled to range from 0 to 1. (C) We deter-
mine the critical velocity as a function of interaction strength
as the lower of the two onset velocities obtained from the
data shown in (A,B). In the BEC regime, the critical veloc-
ity is limited by excitations at small wavevectors (blue dots),
while in the crossover the lowest onset velocities occur at 2 kF
(red diamonds). We find that the 2D Fermi gas is superfluid
throughout the 2D BEC-BCS crossover with the highest crit-
ical velocities found in the crossover regime at ln(kFa2D) ≈ 0.
For comparison, we show the speed of sound vs (grey squares)
as measured in [30], the grey line is a guide to the eye. The
error bars denote the 1σ confidence intervals of the fit and are
mostly smaller than the symbol size.

serve the presence of a well defined sound mode with an
onset velocity that increases as a function of interaction
strength. In the crossover region (ln(kFa2D) ≈ 0.5), the
peak smoothly broadens into a continuum as pair break-
ing becomes the dominant excitation in the system. For
k0 ≈ 2 kF, the excitations on the BEC side are single par-
ticle excitations, with pair breaking taking over towards
the BCS side of the resonance. We fit the onset velocities
for both data sets and use the smaller of the two values
as the critical velocity of the system (see Fig. 4 C).
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The measured critical velocities scale with the speed
of sound on the BEC side of the resonance, show a maxi-
mum in the crossover and decrease again as pair breaking
becomes dominant in the BCS regime. The maximum of
vc at an interaction strength of ln(kFa2D) ≈ 0 further-
more indicates that fermionic 2D superfluids are most
stable in the strongly correlated crossover regime, in good
agreement with the maximum of the critical temperature
for pair condensation reported in [16].

Our results establish 2D Fermi gases as ideal model
systems to study how superfluidity is affected by the in-
terplay of strong correlations and reduced dimensional-
ity. In particular, they can be used to study the transition
from a superfluid to a strongly correlated pseudogap state
above Tc in a much simpler and more accessible system
than high-Tc superconductors. Finally, the dimensional-
ity of ultracold Fermi gases can be tuned continuously,
making them uniquely suited to study the remarkable
stability of the superfluid phase in the crossover from
two to three dimensions.
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Supplementary materials

Preparation Scheme and Tuning of Interactions

We perform our experiments with a balanced spin
mixture of 6Li atoms in the |F = 1/2,mF = 1/2〉 and
|F = 1/2,mF = −1/2〉 hyperfine states. The atoms are
trapped in a box potential, resulting in a homogeneous
density distribution as shown in Fig. S1. As the critical
velocity depends on the density of the gas, this homoge-
nous density is critical for observing a sharp onset of
dissipation at vc.

The experimental setup and the procedure used to pre-
pare homogeneous 2D Fermi gases are described in detail
in [18]. In brief, we first prepare an ultracold gas of 6Li
atoms in a highly elliptical optical dipole trap. We then
perform further evaporative cooling and transfer the re-
maining 4000− 8000 atoms into a circular box potential
with a diameter of D ≈ 60µm.

FIG. S1. Imaging a homogeneous 2D Fermi gas (A) In-
situ absorption image of the density distribution in our box
potential [31]. (B) Momentum distribution after performing
matter wave focusing by letting the gas expand into a har-
monic potential for a quarter of the trap period. The tight
confinement in the z-axis leads to a rapid expansion of the
gas in this direction, which causes the gas to expand far out-
side the depth of field of the imaging system. By tilting the
imaging beam relative to the z-axis, the image of the gas at
different z-positions is displaced laterally, with the gas being
in focus in the center and imaging aberrations increasing to
the sides. (C) In-focus part of the momentum distribution
along the dashed grey line in (B). The condensate peak at
low momenta is clearly visible. All images are the result of
averaging over 8 individual measurements. Note that resolv-
ing thermal wings in the momentum distribution (C) requires
averaging over a significantly higher number of images.

To bring the system into the 2D regime, the atoms
are confined in the z-direction in a single antinode of an
optical standing wave potential. This potential is cre-
ated by two blue-detuned (λ = 532 nm) laser beams in-
terfering under a shallow angle, resulting in an optical
lattice with a lattice spacing of approximately 3µm and
a harmonic oscillator spacing of ~ωz ≈ h 9.2 kHz. For

µ/h [kHz] n [µm−2] VLatt/h [kHz]

Fig. 2A 0.96 1.5 0.36

Fig. 2B 5.1 0.80 0.58

Fig. 3 0.66 1.1 0.24

Fig. 4 - 0.80 0.49

TABLE S1. Experimental parameters. Chemical poten-
tial µ, density n and lattice power VLatt used to obtain the
data shown in Figs. 2-4. The value of the chemical potential
was calculated from the measured density using the equation
of state published in [33]. The height of the lattice potential
is determined from the laser power of the lattice beams using
the mean of the two calibration results described in the text.

all measurements shown in this work, both the chemi-
cal potential µ and the thermal energy kBT of the gas
were kept well below the level spacing ~ωz, thus avoiding
population of excited states in the z-direction. There-
fore, we can parametrize the interparticle interactions
by an effective 2D scattering length a2D and treat the
gas as an effective 2D system. The 2D scattering length
depends on the harmonic oscillator length in z-direction
lz =

√
~/mωz and the 3D scattering length a3D according

to a2D = lz
√
π/0.905 exp(−

√
π/2 · lz/a3D) exp(− 1

2∆w)
[27], where ∆w(µ/~ωz) is a momentum-scale correction
that becomes relevant on the BCS side of the crossover.
In our experiments we tune the 2D scattering length a2D
by varying a3D using a broad Feshbach resonance located
at a magnetic field of B = 832 G [32]. This allows us to
continuously tune the system from a gas of deeply bound
dimers to a BCS superfluid.

Lattice Calibration

To observe frictionless flow in our 2D Fermi gas, we
realize Landau’s gedankenexperiment of a mobile impu-
rity moving through the system without dissipation. In
Landau’s scenario, this disturbance is point-like and can
excite the system at all momenta. However, when try-
ing to experimentally realize this with a focused laser
beam, the shape and finite size of the focus introduce a
momentum scale that is difficult to control. Hence, we
use a moving optical lattice as our impurity, since it has
a well-defined and tunable momentum transfer that is
determined by the lattice wavevector k0.

The moving optical lattice is created by interfering
two red-detuned (λ = 780 nm) laser beams with a con-
trollable frequency difference. To obtain these beams,
we use light from an extended-cavity diode laser (Top-
tica DL PRO 780), split it into two paths and route
each beam through an independently controlled acousto-
optical modulator (AOM). This allows us to create an
optical lattice moving at a speed of v = L∆ν by setting
the frequency difference ∆ν between the two AOMs. We
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can also tune the momentum transfer ~k0 ∝ 1/L of the
lattice by varying the distance of the two beams on the
entrance aperture of the high-resolution objective that
focuses them onto the atoms. This changes the cross-
ing angle α of the interfering beams and thus the lattice
spacing L = λ

2 sinα/2 .

To determine the lattice spacing, we image the poten-
tial directly onto a camera using a second high-resolution
objective. The height of the lattice potential is cali-
brated by projecting each beam onto the gas individually
and measuring the change in the density distribution as
a function of laser power. We observe a linear depen-
dence of the change in density on the laser power and
use the known equation of state of the system to extract
the potential height as a function of laser power for both
beams. We find potential heights V/h of 108 Hz/mW
and 122 Hz/mW for the two beams. As the contrast of
the interference pattern can be extracted from the images
of the intensity distribution and is & 0.95, the potential
height is computed to be VLatt/h ≈ 460 Hz/mW.

Alternatively, we can project the optical lattice at the
widest lattice spacing onto the atoms at variable laser
power and directly measure the amplitude of the result-
ing density modulation. Using this method, we obtain
VLatt/h ≈ 510 Hz/mW, showing reasonable agreement
between the two methods. Thus, the lattice heights used
in this work are a small fraction of the chemical potential
of the gas for all but the lowest values of ln(kFa2D) (see
Table S1).

Thermometry and Controlled Heating

Performing thermometry on strongly interacting de-
generate 2D Fermi gases is challenging, as there is only
very limited theory available for these systems. For har-
monically trapped gases, this problem can be circum-
vented since a significant fraction of the atoms is in the
low density region at the edge of the trap where the gas
is non-degenerate and can be reasonably well described
by a Boltzmann distribution. This allows the extraction
of the temperature of the gas from the in situ density
distribution as done for example in [15]. For our homo-
geneous system, however, such low density wings do not
exist.

An alternative approach is to use matter wave focusing,
where a weak harmonic confinement is used to perform a
rotation in phase space [18, 28] to extract the momentum
distribution of the system. In our case, the harmonic
confinement has a trap frequency of ωmag ≈ 2π · 28 Hz
and is provided by the curvature of the magnetic offset
field. Since this technique requires ballistic expansion
of the sample, we can only use it in the BEC regime,
where the interactions are weak enough that the effect of
collisions during the time of flight can be neglected.

As shown in [15], the high-momentum tail of the mo-

mentum distribution is well described by a Boltzmann

equation of state nλ2T = eµd/kT , where λT =
√

2π~2

mdkBT

is the thermal wavelength of dimers with mass md and
µd is the chemical potential of the dimers. Hence
we can extract the temperature of a gas in the BEC
regime by performing matter wave focusing and fitting
the high-momentum part of the momentum distribution.
However, since the signal-to-noise ratio for this high-
momentum part is quite low in our measurements, this
method requires considerable averaging and is not suit-
able as a single-shot thermometer. We therefore use the
change of the height of the condensate peak, which can
be determined with a much higher signal-to-noise ratio,
to quantify the response of the system to the moving pe-
riodic potential.

To increase the temperature of the gas in a controlled
manner, we move the periodic potential through the sys-
tem for a variable heating time τ at a velocity larger than
the critical velocity. The resulting change in the momen-
tum distribution of the system is shown in Fig. S2 A-C,
with the extracted temperatures shown in Fig. S2 D. For
comparison, we show the change in the height of the con-
densate peak, plotted as r(τ) = (n(k = 0, τ = 0)/n(k =
0, τ))− 1 in Fig. S2 E. We use this measurement to cali-
brate the heating procedure and thereby the temperature
axis shown in Fig. 3 D.

FIG. S2. Calibration of the heating procedure. (A-
C) Measurements of the momentum distribution of the gas
after applying the moving lattice to the system for different
heating times τ . The red solid lines show the Boltzmann fits
to the wings of the distribution from which the temperature
is extracted. (D) Temperature T of the gas as a function of
heating time. We observe that the temperature of the gas
increases roughly linearly with the heating time (red dashed
line). (E) Response r(τ) as a function of heating time. The
response shows a very similar behavior to the temperature,
but can be measured with a much higher signal-to-noise ratio.
All data points are obtained from an average of 55 individual
measurements. The error bars in (D) denote the 1σ confidence
interval of the fit.

To obtain an estimate of the systematic uncertainty
of our determination of Tc, we performed a second set
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of measurements with a homogeneous 2D Fermi gas in
a different potential: Using a red-detuned (λ = 770 nm)
flat-bottom potential shaped by a digital micromirror de-
vice (DMD) instead of blue-detuned walls creates a box
trap of the same dimensions as in the previous measure-
ment, but with a weak (ωmag ≈ 2π · 28 Hz) harmonic
confinement outside the trap volume that is populated
by a small number of thermal atoms. While the lowest
temperatures we achieved in this red-detuned potential
were significantly higher than in the blue-detuned trap,
we were able to perform a measurement of the critical
temperature at comparable interaction strength and den-
sity to the data shown in Fig. 3 of the main text. For
this measurement, thermometry was performed using a
Boltzmann fit to the low density part of the in situ den-
sity distribution, from which we obtain a critical tem-
perature of Tc = 0.116(2)TF using the same evaluation
as for the data shown in Fig. 3. A source of error on
the temperatures extracted using these in situ fits are
inhomogeneities of the harmonic potential, for example
due to the optical lattice used for the 2D confinement,
as well as small offsets in the absorption imaging, which
most likely lead to an overestimation of the temperature
of the gas. As a rough approximation for the systematic
error of our determination of Tc we use the difference
between the values obtained using time-of-flight ther-
mometry (Tc/TF = 0.094(4)) and in situ thermometry
(Tc/TF = 0.116(2)). This then yields a critical tempera-
ture of Tc/TF = 0.094± 0.004stat ± 0.02sys for a bosonic
system at an interaction parameter of ln(kFa2D) = −2.9.

Critical Temperature in the BEC-BCS Crossover

To observe the phase transition from a superfluid to
a normal state across the BEC-BCS crossover, we per-
formed measurements similar to the one shown in Fig. 3
for interaction strengths ranging from ln(kFa2D) = −4.1
deep in the molecular regime to ln(kFa2D) = 1.1 on
the BCS side of the resonance (Fig. S3). For these
measurements, we prepare and heat the system at the
same interaction strength of ln(kFa2D) = −2.9 as for the

measurements shown in Fig. 3, ramp to different mag-
netic fields to tune the interaction strength to the desired
value, and perform measurements of vc at these interac-
tion strengths. We observe a clear qualitative difference
in the response to the moving lattice between cold and
hot systems at all measured interaction strengths, show-
ing the presence of a critical temperature. However, as
the temperature of the gas changes during the interaction
ramp and we cannot use matter wave focusing to deter-
mine the temperature at higher interaction strengths, we
are currently unable to quantitatively determine the crit-
ical temperatures of these systems. Nevertheless, these
results present a promising starting point for a future
measurement of the critical temperature for superfluid-
ity in 2D Fermi gases across the BEC-BCS crossover.

FIG. S3. Superfluid phase transition at different in-
teraction strengths. Difference ∆R̄2 of the adjusted coeffi-
cients of determination between fits to r(v, T ) with zero and
non-zero vc as a function of heating time τ for different in-
teraction strengths. Linear fits of ∆R̄2 with a threshold at a
critical heating time (red lines) clearly show the appearance
of a non-zero critical velocity below a critical temperature for
systems across the crossover (A,B,C) and into the BCS regime
(D). However, due to the challenges involved in measuring the
temperature of strongly interacting homogenous Fermi gases
discussed in the text we are currently not able to quantita-
tively determine the relation between the heating time and
the temperature for these systems and hence cannot give a
value for Tc.
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