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Agenda

1. Introduction to relational models [Marcel]
2. Compressing probabilistic relational models [Malte]
3. Application: Lifted causal inference [Malte]

▶ Lifted computation of causal effects
▶ Lifted computation of causal effects with partial causal knowledge

4. Summary [Marcel]
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An Ice Cream Example

▶ Correlation ̸= causation
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Explanation of the Ice Cream Example Data
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Learnings from the Ice Cream Example

▶ For prediction, correlation is sufficient

▶ E.g., knowing ice cream sales suffices to predict shark attacks
▶ For decision making (acting), causal information is required

▶ E.g., Reducing ice cream sales will not reduce shark attacks
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Causal Models

A causal model consists of
1. a causal graph G, and
2. a probability distribution P .
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Brendan J. Frey (2003). »Extending Factor Graphs so as to Unify Directed and Undirected Graphical Models«.
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI-2003). Morgan Kaufmann
Publishers Inc., pp. 257–264.
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Parametric Causal Factor Graphs

▶ Parametric causal factor graphs (PCFGs) use logical variables to represent groups of
random variables

▶ Full joint probability distribution encoded as a product over all ground factors
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Malte Luttermann, Mattis Hartwig, Tanya Braun, Ralf Möller, and Marcel Gehrke (2024). »Lifted Causal Inference
in Relational Domains«. Proceedings of the Third Conference on Causal Learning and Reasoning (CLeaR-2024).
PMLR, pp. 827–842.
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Lifted Causal Inference in PCFGs I
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▶ Is it worth the costs to send an employee to a training course?

P (Rev | do(Comp(alice) = high)) − P (Rev | do(Comp(alice) = low)) = ?

▶ What effect has sending all employees to a training course on the revenue?

P (Rev | do(Comp(E) = high)) − P (Rev | do(Comp(E) = low)) = ?
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Lifted Causal Inference in PCFGs II

▶ E.g., P (Rev | do(Comp(E) = high))
▶ Sets fixed value Comp(E) = high
▶ Removes incoming influences from Comp(E)
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▶ do(Comp(E) = high) is shorthand for do(Comp(e1) = high, . . . ,
Comp(ek) = high), where dom(E) = {e1, . . . , ek}

▶ In non-lifted model, every ei ∈ dom(E) has to be considered separately
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Lifted Causal Inference in PCFGs III

▶ An intervention on a propositional random variable requires splitting of nodes
▶ E.g., P (Rev | do(Comp(alice) = high))

▶ Removes alice from Comp(E)
▶ Adds an additional node Comp(alice)
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Partially Directed Parametric Causal Factor Graphs

▶ Often not all causal relationships are known
▶ Directed edges to represent known causal relationships
▶ Undirected edges for relationships with unknown causal directions
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Malte Luttermann, Tanya Braun, Ralf Möller, and Marcel Gehrke (2024). »Estimating Causal Effects in Partially
Directed Parametric Causal Factor Graphs«. Proceedings of the Sixteenth International Conference on Scalable
Uncertainty Management (SUM-2024). Springer, pp. 265–280.
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Lifted Causal Inference in Partially Directed PCFGs I

▶ An intervention is defined on a fully directed graph
▶ E.g., P (Rev | do(Comp(E) = high))

▶ Sets fixed value Comp(E) = high
▶ Removes incoming influences from Comp(E)
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Lifted Causal Inference in Partially Directed PCFGs II

General algorithm:
1. Split nodes of interventional variables (avoid grounding as much as possible)
2. Enumerate relevant edge directions to compute the effect of an action
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Theorem
To compute the effect of an intervention, it is sufficient to consider the directions of the
undirected edges that are connected to the random variables on which we intervene.
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Lifted Causal Inference – Summary

▶ (Partially directed) PCFGs enable lifted causal inference
▶ Grounding is avoided whenever possible
▶ Only relevant edge directions of undirected edges are considered for causal inference
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1. Introduction to relational models [Marcel]
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