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1. Introduction to relational models [Marcel]

2. Compressing probabilistic relational models [Malte]
» Advancing the state of the art to obtain an exact compressed representation
» Approximating a compressed representation with known error bounds
» Handling unknown factors

3. Application: Lifted causal inference [Malte]
4. Summary [Marcel]
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Compressing Probabilistic Relational Models — Problem Setup

» Input: A factor graph G

» Qutput: A parametric factor graph entailing equivalent semantics as GG

» Under consideration of commutative factors
» Independent of the order of factor's arguments
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Compressing Probabilistic Relational Models — Colour Passing

» Compression of a propositional model by passing colours around

Kristian Kersting, Babak Ahmadi, and Sriraam Natarajan (2009). »Counting Belief Propagation«. Proceedings of
the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI-2009). AUAI Press, pp. 277-284.

Babak Ahmadi, Kristian Kersting, Martin Mladenov, and Sriraam Natarajan (2013). »Exploiting Symmetries for
Scaling Loopy Belief Propagation and Relational Training«. Machine Learning 92, pp. 91-132.
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Limitations of the Colour Passing Algorithm

1. Commutative factors are not recognised

2. Relies on fixed argument orders to detect equivalent factors

3. No logical variables are introduced
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Commutative Factors

» Detecting commutative factors allows to further compress the graph

» Histograms to efficiently detect and represent commutative factors

» Also applicable to a subset of arguments

A ‘ B ‘ ¢1(/4713)
a true | true ©1

true

[ ]
e @1 false
false

false
true
false

®2
©2
®3

StaRAl — Compressing Probabilistic Relational Models

6/52



Permuted Factors

» Histograms are an efficient filter condition to check for the equivalence of factors

» Histograms determine possible permutations of factor arguments

true | true 1 true | true ©1
a true | false o a true | false V2
false | true ©3 false | true ©3
L] false | false Y4 L false | false P4
G G
- C B | ¢2(C, B) - B C | ¢2(B,C)
true | true ©1 true | true 1
¢2 b2
true | false ) true | false 3
false | true ©3 false | true V2
false | false P4 false | false ‘ Y4
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The Advanced Colour Passing Algorithm — Overview

Advanced Colour Passing (ACP) solves the limitations of the Colour Passing algorithm:
1. ACP recognises commutative factors

2. ACP detects equivalent factors independent of argument orders
3. ACP introduces logical variables

Salary.alice Salary.bob Salary.dave

Malte Luttermann, Tanya Braun, Ralf Méller, and Marcel Gehrke (2024). »Colour Passing Revisited: Lifted Model
Construction with Commutative Factors«. Proceedings of the Thirty-Eighth AAAI Conference on Artificial
Intelligence (AAAI-2024). AAAI Press, pp. 20500-20507.
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The Advanced Colour Passing Algorithm — Example Run

1. Check for factor equivalence and rearrange arguments if necessary

B | C | ¢(B,0)

StaRAl — Compressing Probabilistic Relational M

odels

A B | ¢1(A, B)
a true | true ©1
[1¢1  true | false V9
e false | true ©3
false | false Y4
T ¢2
C<>D ¢3(C, D)
G true | true ©1
1 ¢3  true | false ©3
e false | true V2
false | false Y4

true | true s
true | false V6
false | true Y6
false | false w7
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The Advanced Colour Passing Algorithm — Example Run

1. Check for factor equivalence and rearrange arguments if necessary

B | C | ¢(B,0)
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A B | ¢1(A, B)
a true | true ©1
[1¢1  true | false V9
e false | true ©3
false | false Y4

T ¢2

D | C |¢(D,C)
G true | true ©1
1 ¢3  true | false V9
e false | true ©3
false | false Y4

true | true s
true | false V6
false | true Y6
false | false w7
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The Advanced Colour Passing Algorithm — Example Run

2. Assign initial colours

A B | ¢1(A,B)
a true | true ©1
9% true | false 2
e false | true 3 B ‘ ¢ ‘d)z(B,C’)
° false | false 04 true | true ©5
92 true | false ©6
G tD tC ¢3(D,C) false | true V6
rue | true 1
5%, true | false o false | false o7
e false | true ©3
false | false V4
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The Advanced Colour Passing Algorithm — Example Run

3. Pass colours from variable nodes to factor nodes
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The Advanced Colour Passing Algorithm — Example Run

4. Recolour factor nodes
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The Advanced Colour Passing Algorithm — Example Run

5. Pass colours from factor nodes to variable nodes (omit positions if commutative)
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The Advanced Colour Passing Algorithm — Example Run

6. Recolour variable nodes
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The Advanced Colour Passing Algorithm — Example Run

7. Introduce logical variables

StaRAl — Compressing Probabilistic Relational Models

R(X) | S(X) | ¢1(R(X), (X))

true true ©v1
true | false )
false | true ©3
false false P4




The Advanced Colour Passing Algorithm — Compression Result

A B | ¢1(A,B)

true | true ©1

true | false 2

false | true ©3 R(X) ‘ S(X) ‘ #(R(X),S(X))

false | false ©4 true true ©1

B C | ¢2(B,C) true | false ©2
false | true ©3

true | true Vs @ r|-. o

true | false e . false | false o

false | true e S(X / S(X

false | false 24 @ 1 ¢ #X[g (()] ! ‘ ¢2(#ti[5( =

C D (153(0, D) [1, 1} Y6

true | true 1 [0,2] P17

true | false ©3

false | true ©2

false | false P4
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Introduction of Logical Variables

» Introduction of logical variables to match groundings
» Three p055|b|e scenarios (distinct, blnary shared) in the domain- I|ftab|e fragment
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The Advanced Colour Passing Algorithm — Experiments

» Comparison of run times for lifted inference
> Left: Factor graphs with 1 commutative factor (no permuted argument orders)
» Right: Factor graphs where the arguments of 3 percent of the factors are permuted

(no commutative factors)

LVE (ACP) .
-A- LVE (CP)
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The Advanced Colour Passing Algorithm — Summary

Limitations of Colour Passing solved:
1. Histograms to efficiently detect and compactly represent commutative factors

2. Histograms to efficiently identify factor equivalence
3. Logical variables for the class of domain-liftable models

1 2 3 4
b1 L o7 o1

¢2
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Efficient Detection of Exchangeable Factors |

» Goal: Efficiently detect exchangeable (i.e., equivalent) factors
» Exchangeable factors encode an equivalent probability distribution

A | B | ¢1(AB)
true | true ©1
a true | false
false | true ©3 R(X)‘ B ‘¢/1(R(X)aB)
' false | false V4 @ true | true 1
d)l — 0 true | false
o c B | ¢2(C, B) 4 false | true ©3
a ¢y true | true 1 false | false 04
true | false
false | true V3
false | false 04
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Efficient Detection of Exchangeable Factors Il

» Goal: Efficiently detect exchangeable (i.e., equivalent) factors
» Exchangeable factors encode an equivalent probability distribution

A | B | ¢1(4A,B) A | B | ¢i(A B)
true | true ©1 true | true ©1
a true | false true | false
false | true ©3 false | true ©3
e false | false Y4 false | false Y4
5 C B | ¢2(C,B) B C 5(B,C)
a ¢y true | true ©1 true | true 1
true | false true | false ©3
false | true V3 false | true
false | false 04 false | false 04
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Efficient Detection of Exchangeable Factors — Overview

Previously:
» Advanced Colour Passing algorithm to compress a factor graph
» Buckets to prune the search space, then iterating over all argument permutations

» Number of iterations in the worst-case for a factor with n arguments: O(n!)
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Efficient Detection of Exchangeable Factors — Overview

Previously:

» Advanced Colour Passing algorithm to compress a factor graph

» Buckets to prune the search space, then iterating over all argument permutations

» Number of iterations in the worst-case for a factor with n arguments: O(n!)
Next:

» Theoretical guarantees: Buckets to avoid iterating over permutations if possible

» Practical algorithm: Detection of Exchangeable Factors (DEFT) algorithm

» Number of iterations in the worst-case for a factor with n arguments: O(d) with
d < n! in many practical settings

Malte Luttermann, Johann Machemer, and Marcel Gehrke (2024b). »Efficient Detection of Exchangeable Factors in
Factor Graphs«. Proceedings of the Thirty-Seventh International Florida Artificial Intelligence Research Society
Conference (FLAIRS-2024). Best Student Paper. Florida Online Journals.
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» Buckets count the occurrences of specific range values in an assignment
» Each potential belongs to exactly one bucket
» Each bucket contains at least one potential

true | true 1 (2,0

]
e true | false [1,1]
false | true 3 [1,1] b b1(b bo(b
e false | false - [0,2] (2,0] | {f(l}? | {99(1]?
B | C |¢BC)| b (L,1] | {22, 93} | {ws, 02}

Q true | true o1 2, 0] 0,2] | {eu} {a}
true | false w3 [1,1]
false | true [1,1]
false | false ©4 [0,2]
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Properties of Buckets |

> If at least one bucket is mapped to different multisets of values by ¢; and ¢9, then
¢1 and ¢ are not exchangeable (Luttermann, Braun, Méller, and Gehrke, 2024)

9.
¢1
OL
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A B | ¢1(A,B)| b
true | true ©1 [2,0]
true | false [1,1]
false | true 3 [1,1]
false | false 4 [0,2]

B | C | $BC)| b
true | true 1 [2,0]
true | false ©3 [1,1]
false | true [1,1]
false | false 04 [0,2]

b | 61() | ¢a(b)
2,0] | {1} {e1}
[17 1] { ’ 303} {993: }
0,2] | {pa} {pa}
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Properties of Buckets Il

» Two factors are exchangeable iff there exists a permutation of their arguments such
that each bucket is mapped to the same ordered multiset of values

o.
¢1
OL
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A B | ¢1(A,B)
true | true ©1
true | false
false | true w3
false | false V4

B C | $(B,0)
true | true ©1
true | false ©3
false | true
false | false o
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The Detection of Exchangeable Factors Algorithm — Example Run

> lterate over buckets and search for possible rearrangements to obtain identically
ordered multisets within each bucket

A | B | 6(AB)| b b | r(d) | #5(b)
true | true P1 [2,0] [2,0] | (o) (1)
a true | false [1,1] [1,1] | {0, 03) | (p3,02)
false | true 3 [1,1] [0, 2] (p1) (p4)
§ [07 2]

Possible rearrangements:

e false | false 04
» B C | ¢2(B,0) b [2,0]: B — {1,2}, C — {1,2}

a ¢y true | true ©1 [2,0]
true | false ©3 [1,1]

false | true [1,1]

false | false 04 [0,2]
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The Detection of Exchangeable Factors Algorithm — Example Run

> lterate over buckets and search for possible rearrangements to obtain identically
ordered multisets within each bucket

A | B |a(AB)| b b | ¢7(b) | #5(b)
true | true ©1 [2,0] 2,0] | {¢1) (1)
a true | false [1,1] [1,1] | {©2,03) | {p3,¥2)
false | true 3 [1,1] [0, 2] (p1) (p4)
§ [07 2]

Possible rearrangements:

e false | false 04
» B C | ¢2(B,0) b [2,0]: B — {1,2}, C — {1,2}

a ¢y true | true 01 [2,0] [1,1: B = {2}, C = {1}
true | false ©3 [1,1]
false | true [1,1]
false | false V4 [0, 2]
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The Detection of Exchangeable Factors Algorithm — Example Run

> lterate over buckets and search for possible rearrangements to obtain identically
ordered multisets within each bucket

A | B |a(AB)| b b | ¢7(b) | #5(b)
true | true ©1 [2,0] [2,0] | {o1) (1)
a true | false [1,1] [1,1] | {0, 03) | (p3,02)
false | true 3 [1,1] [0, 2] (pa) (pa)
[0, 2]

Possible rearrangements:

e false | false 04
» B C | ¢2(B,0) b [2,0]: B — {1,2}, C — {1,2}

a ¢y true | true 01 [2,0] [1,1: B = {2}, C = {1}
true | false 03 1,11  [0,2]: B—={1,2}, C = {1,2}
false | true [1,1]
false | false V4 [0, 2]
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The Detection of Exchangeable Factors Algorithm — Example Run

> lterate over buckets and search for possible rearrangements to obtain identically
ordered multisets within each bucket

A | B |¢(4,B)| b b | o7 () | ¢5(b)
true | true 01 [2,0] [2,0] (p1) {p1)
@ true | false [1,1] [1,1] | (o, 03) | {p3,02)
false | true ©3 [1,1] [0,2] n) {4)
: [0,2]

Possible rearrangements:

e false | false V4
B C | ¢2(B,0) b [2,0]: B— {1,2}, C — {1,2}

a true | true 1 [2,0] [L,1]: B— {2}, C — {1}
true | false ©3 [1,1] [0,2]: B—{1,2}, C — {1,2}
false | true [1,1] Intersection: B — {2}, C' — {1}
false | false V4 [0, 2]
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Degree of Freedom (Theoretical Guarantees)

» Duplicate values in buckets increase complexity

» Degree of freedom of a bucket b:
b | ¢y | ¢5(h)

F(b) = H count (¢ (b), ¢)! 3,0] (1) (1)
pCunique(¢- (b)) 2,1] | (2,93, 95) | (©3, 05, 02)
bl 2 b b ) )
» Degree of freedom of a factor ¢: {(1),3} <¢4<Z$>%> - (:ii)(p6>
F (o) min F(b)

 be{blbeB(@)Ale (B)|>1)
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Degree of Freedom (Theoretical Guarantees)

» Duplicate values in buckets increase complexity

» Degree of freedom of a bucket b:
b | ¢y | ¢5(h)

F(b) = H count (¢ (b), ¢)! 3,0] (1) (1)
pCunique(¢- (b)) 2,1] | (2,93, 95) | (©3, 05, 02)
bl 2 b b ) )
» Degree of freedom of a factor ¢: {(1),3} <w4<i$>%> - (:ii)(p6>
F (o) min F(b)

T be{peB@AIG- (4)]>1)
» The number of table comparisons needed to check whether ¢ and ¢5 are
exchangeable is in O(d), where d = min{F(¢1), F(¢2)} (i.e., d is factorial)
» In many practical settings it holds that d < n!
» The degree of freedom is upper-bounded by n!
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The Detection of Exchangeable Factors Algorithm — Experiments

» Comparison of run times of DEFT, ACP (previous work), and a »naive« approach

> Average over exchangeable and non-exchangeable factors with a proportion of
identical potentials in {0.0,0.1,0.2,0.5,0.8,0.9,1.0}

» Timeout after 30 minutes per instance

10000 ACP . e
m - DEFT . Ut
é 1004 -= Naive /. k
) LA
g 14 ,A—’///"
+ A---_RZ
4 8 12 16
n

StaRAl — Compressing Probabilistic Relational Models 22/52



The Detection of Exchangeable Factors Algorithm — Summary

» Problem of detecting exchangeable factors efficiently solved

» Upper bound on the number of table comparisons depending on the number of
duplicate potential values within the buckets of the factors

» The DEFT algorithm exploits this upper bound effectively in practice

o1 o} 0} mp

23/52
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Efficient Detection of Commutative Factors |

» Goal: Efficiently detect commutative factors

» Commutative factors have symmetries within themselves due to their arguments

being exchangeable

Comp.A | Comp.B | Rev | ¢(Comp.A,Comp.B, Rev)
true true true ©1
true true false V4
true false true P2
true false false ©s
false true true V2
false true false ©s
false false true 3
false false false Ve
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Efficient Detection of Commutative Factors |

» Goal: Efficiently detect commutative factors

» Commutative factors have symmetries within themselves due to their arguments

being exchangeable

Comp.A | Comp.B | Rev | ¢(Comp.A,Comp.B, Rev)
true true true ©1
true true false V4
true false true P2
true false false ©s
false true true V2
false true false ©s
false false true 3
false false false Ve
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Efficient Detection of Commutative Factors |

» Goal: Efficiently detect commutative factors

» Commutative factors have symmetries within themselves due to their arguments

being exchangeable

Comp.A | Comp.B | Rev | ¢(Comp.A,Comp.B, Rev)
true true true ©1
true true false V4
true false true P2
true false false s
false true true V2
false true false ©s
false false true 3
false false false Ve
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Efficient Detection of Commutative Factors I

Comp.A | Comp.B | Rev | ¢(Comp.A,Comp.B, Rev)
true true true Y1

true false true

true false false ©s
false true true

false true false s
false false true ©3
false false false ©6

|

Comp(E)] ‘ Rev ‘ ¢(#Ee[Comp(E)], Rev)

1T
CRev D

(2,0] true »1

[1,1] true
¢ [] [0,2] true 3
(2,0] false P4
@ [1,1] false s
[0,2] false 6
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Efficient Detection of Commutative Factors — Overview

Previously:
» Advanced Colour Passing algorithm to compress a factor graph
» Iteration over all subsets of arguments to find commutative arguments

» Number of iterations for a factor with n arguments is in O(2")
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Efficient Detection of Commutative Factors — Overview

Previously:
» Advanced Colour Passing algorithm to compress a factor graph

» Iteration over all subsets of arguments to find commutative arguments
» Number of iterations for a factor with n arguments is in O(2")

Next:
» Theoretical guarantees: Buckets to avoid iterating over all subsets
» Practical algorithm: Detection of Commutative Factors (DECOR) algorithm

Malte Luttermann, Johann Machemer, and Marcel Gehrke (2024a). »Efficient Detection of Commutative Factors in
Factor Graphs«. Proceedings of the Twelfth International Conference on Probabilistic Graphical Models
(PGM-2024). PMLR, pp. 38-56.
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» Buckets count the occurrences of specific range values in an assignment
» Each potential belongs to exactly one bucket
» Each bucket contains at least one potential

A| B | R |6ABR| b
true | true | true ©1
true | true | false 04 [2,1] b ‘ o(b)
true | false | true ©2 2,1] (p1)
true | false | false 05 [1,2] 12,1] | (@4, P2, P2)
false | true | true 2 2,1] [1,2] | (¥s5, 95, @3)
false | true | false ©s5 1,2] [0, 3] (p6)
false | false | true ©3 [1,2]
false | false | false ©6 [0, 3]
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Properties of Buckets |

For any subset S of commutative arguments:

> |S| < minpe (ppes(o)nlo()>1} MaXpegp(n) count(o(d), ¢), i.e.,
» in each bucket b with |¢(b)| > 1, there is a potential occurring at least |S| times

A | B | R |¢ABR| b

true | true | true ©1

true | true | false ©4 (2,1]
true | false | true V2 (2,1]
true | false | false 5 1,2]
false | true | true P2 (2,1]
false | true | false ©5 [1,2]
false | false | true ©3 [1,2]
false | false | false V6 [0, 3]

StaRAl — Compressing Probabilistic Relational Models

b | ()

{p1)
(2,1] | (@4, p2,02)
[1,2] | { 5,95 ,¢3)
[0, 3] {w6)
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Properties of Buckets Il

For a group of identical potentials in a bucket:

» Intersection of their corresponding assignments yields candidates
> E.g., for pa'sin [2,1]: (true, false, true) N (false, true, true) = (0,0 , true)

A B R | ¢(A,B,R)
true | true | true Y1
true | true | false 04
true | false | true 2
true | false | false 5
false | true | true V2
false | true | false w5
false | false | true ©3
false | false | false V6

StaRAl — Compressing Probabilistic Relational Models

b | o)

(1)
(2,1] | (@4, p2,92)
1,2] | (s, 5, 93)
[0, 3] {w6)
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The Detection of Commutative Factors Algorithm — Example Run

» lterate over buckets and compute candidates for commutative arguments

A | B | R |#ABR)| b b | o)
true | true | true 1 {p1)
true | true | false ©4 [2,1] 12,1] | {pa, P2, ¥2)
true | false | true 2 [2,1] [1,2] | (@5, ¢s5, ©3)
true | false | false 5 [1,2] [0, 3] (p6)
false | true | true 2 [2,1]
false | true | false o5 [1,2] Initial candidates: {{A, B, R}}
false | false | true 3 [1,2]
false | false | false 6 [0, 3]
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The Detection of Commutative Factors Algorithm — Example Run

» lterate over buckets and compute candidates for commutative arguments

A | B | R |¢(ABR)| b b | 9(b)
true | true | true »1 (1)
true | true | false V4 (2,1] 12,1] | {4, p2,02)
true | false | true V2 [2,1] [1,2] | (w5, 5, p3)
true | false | false 5 1, 2] [0, 3] {p6)
false | true | true 2 [2,1]
false | true | false 05 1,2] Initial candidates: {{A, B, R}}
false | false | true 3 1,2] [3,0] (|e(0)] <2): {{A,B,R}}
false | false | false ©6 [0, 3]
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The Detection of Commutative Factors Algorithm — Example Run

> Iterate over buckets and compute candidates for commutative arguments

A B R | ¢(A,B,R)| b b | #(b)
true | true | true p1 (p1)
true | true | false ©4 [2,1] [2,1] | (@4, P2, P2)
true | false | true ©2 [2,1] [1,2] | {5, @5, ¢3)
true | false | false 05 [1,2] [0, 3] (p6)
false | true | true V2 [2,1]
false | true | false o5 1,2] Initial candidates: {{A, B, R}}
false | false | true 03 [1,2] 3,0] (lo(b)| < 2): {{A, B, R}}
false | false | false 6 [0, 3] [2,1]: {{A, B}}

(true, false, true) N (false, true, true) = (0, 0, true)
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The Detection of Commutative Factors Algorithm — Example Run

> Iterate over buckets and compute candidates for commutative arguments

A B R | ¢(A,B,R)| b b | #(b)
true | true | true ©1 (1)
true | true | false V4 [2,1] [2,1] | {p4, 02, p2)
true | false | true V2 [2,1] [1,2] | (5,5, P3)
true | false | false 05 1,2] [0, 3] (p6)
false | true | true V2 (2,1]
e e e — o5 1,2] [Initial candidates: {{A, B, R}}
false | false | true ©3 [1,2] (3,0 (Jo(b)] <2): {{A,B,R}}
false | false | false 6 [0, 3] [2,1]: {{A, B}}
[1,2]: {{4, B}}
(true, false, false) N (false, true, false) = (0, 0, false)

StaRAl — Compressing Probabilistic Relational Models
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The Detection of Commutative Factors Algorithm — Example Run

» lterate over buckets and compute candidates for commutative arguments

A B R | #(A,B,R)| b b | 9(b)

true | true | true »1 (1)

true | true | false 4 2,1] 12,1] | (¢4, 02, 02)

true | false | true V2 [2,1] [1,2] | (w5, 5, p3)

true | false | false 5 1, 2] [0, 3] (p6)

false | true | true 2 [2,1]

false | true | false o5 1,2 Initial candidates: {{A, B, R}}

false | false | true 3 1,2] (3,0] (|e(b)] <2): {{A,B,R}}

false | false | false ©6 [0, 3] [2,1]: {{A, B}}
[1,2]: {{4, B}}
[0,3] (|o(0)] <2): {{A4, B}}
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The Detection of Commutative Factors Algorithm — Complexity

» Avoids »naive« iteration over all 2" subsets of arguments b ‘ ¢(b)
» Time complexity is upper-bounded depending on the 2.1] | ( (pu) >
number of groups of identical potentials in the buckets ’ Y1, 2, P2
[1,2] | (5,95, 93)

[Oa 3} <906>
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The Detection of Commutative Factors Algorithm — Complexity

» Avoids »naive« iteration over all 2" subsets of arguments b ‘ ¢(b)

» Time complexity is up.)per—!)ounded d(Iepen.ding on the 2,1] <904,<22=>902>
number of groups of identical potentials in the buckets 1.2] | (5. 05, 3)

» In practice, there are two possible scenarios: [0, 3] (%)

1. A factor contains commutative arguments

» Potential values are likely to contain a single group of duplicates
2. A factor contains no commutative arguments

» Potential values are likely to be distinct
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The Detection of Commutative Factors Algorithm — Experiments

» Comparison of run times of DECOR and the »naive« approach
» Average over factors with k € {0,2, | §],n —1,n} commutative arguments
» Timeout after five minutes per instance

10000 A DECOR ) A
—~~ A
2] -A- Naive L
£ 1001 A
[0} A
S 1 7
= s
A
4 8 12 16
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The Detection of Commutative Factors Algorithm — Summary

» Problem of efficiently detecting commutative factors solved

» Upper bound on the number of iterations depending on the number of groups of
identical potential values within the buckets of a factor

» The DECOR algorithm effectively exploits this upper bound in practice

o1 o} 0} mp

33/52
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Approximate Lifted Model Construction

» So far: Strict equality between potentials required
> Eg., 01 =1, P2 =2, P3= @3, Ps = @4

@ Sal A ‘ Rev ‘ @¢1(SalA, Rev) SalB ‘ Rev ‘ ¢2(SalB, Rev)
L] high | high 01 high | high 01
@ é1 high | low 0 high | low 0
N low | high ©3 low | high ©3
@ b low | low V4 low | low V4
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Approximate Lifted Model Construction

> Next: Allow for a small deviation between potentials for practical applicability
> Eg. o1 R @1 2R ph, 0303 pa R Y

SalA ‘ Rev ‘ ¢1(SalA, Rev) SalB ‘ Rev ‘ ¢2(SalB, Rev)

high | high 01 high | high A
high | low 02 high | low A
0 low | high ©3 low | high A
low | low 04 low | low )

-
N

S

Malte Luttermann, Jan Speller, Marcel Gehrke, Tanya Braun, Ralf Méller, and Mattis Hartwig (2025).
»Approximate Lifted Model Construction«. Proceedings of the Thirty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI-2025). |JCAI Organization.
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Approximate Lifted Model Construction

» Next: Allow for a small deviation between potentials for practical applicability

> E.g., 01 =), 2= ph, 3R @5, 4R Q)

SalA ‘ Rev ‘ ¢1(SalA, Rev) SalB ‘ Rev ‘ ¢2(SalB, Rev)

-
N

L] high | high 01 high | high o)
@ 1 high | low 09 high | low o
0 low | high 3 low | high A
@ low | low 04 low | low )

» How can factors that are not strictly equivalent be grouped?

» How much deviation should be allowed and what is the impact on query results?
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e-Equivalence

» Potentials ¢1 € R* and ¢y € R are e-equivalent if
¢1 € [p2-(1—¢),p2- (1+¢)] and
@2 € [p1-(L—¢),p1-(1+¢)]

» Factors ¢1(R1, ..., Ry) and ¢o(R), ..., R)) are e-equivalent if all potentials in their
potential tables are e-equivalent
» E.g., for e = 0.1, $1(SalA, Rev) and ¢2(SalB, Rev) are e-equivalent:

SalA ‘ Rev ‘ ¢1(SalA, Rev) SalB ‘ Rev ‘ ¢2(SalB, Rev)

high | high 0.81 high | high 0.84
high | low 0.32 high | low 0.31
low | high 0.51 low | high 0.51
low | low 0.21 low low 0.20
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Grouping e-Equivalent Factors

> A representative potential table is required to construct a lifted representation

SalB | Rev | ¢3(SalB, Rev)

@ SalA ‘ Rev ‘ ¢1(SalA, Rev)
il high | high ©1
@ ¢1  high | low 3
0 low | high ©3
@ b2 low | low ©4
|

high | high o
high | low ©h
low | high A
low | low ol

Sal(E) | Rev | ¢{(Sal(E), Rev)

CSal(E)) Tigh | high

I high | low
CRev Y g low | high
low low
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Grouping e-Equivalent Factors

> A representative potential table is required to construct a lifted representation

SalB | Rev | ¢3(SalB, Rev)

@ SalA ‘ Rev ‘ ¢1(SalA, Rev)
il high | high ©1
@ ¢1  high | low 3
0 low | high ©3
@ b2 low | low ©4
|

high | high o
high | low ©h
low | high A
low | low ol

Sal(E) | Rev | ¢{(Sal(E), Rev)

CSal(E)) Tigh | high

I high | low
CRev Y g low | high
low low

» How to choose ¢;7?
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Minimisation of the Approximation Error |

For a group of pairwise e-equivalent factors G = {¢1, ..., ¢r}, we want to set

¢1:¢*7"'7¢k:¢*
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Minimisation of the Approximation Error |

For a group of pairwise e-equivalent factors G = {¢1, ..., ¢r}, we want to set

¢1:¢*7"'7¢k:¢*

such that

¢* = arg min Z ETT(¢i7¢j)’

=T
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Minimisation of the Approximation Error |

For a group of pairwise e-equivalent factors G = {¢1, ..., ¢r}, we want to set

¢1:¢*7"'7¢k:¢*

such that

¢* = arg min Z ETT(¢i7¢j)’

=T

where Err(¢;, ¢;) is the sum of squared deviations between ¢;'s and ¢;'s potentials:

Bre(on o= Y (6ireir) — byl )

(T15eeyTn)
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Minimisation of the Approximation Error Il

Theorem

The optimal choice for ¢* is the arithmetic mean of the potentials in G:

1 k
¢*(T1,..‘, %Z 7”1,..., )
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Minimisation of the Approximation Error Ill

» Choose ¢} as the row-wise arithmetic mean of the potentials

@ SalA ‘ Rev ‘ ¢1(SalA, Rev) SalB ‘ Rev ‘ ¢2(SalB, Rev)
O high | high »1 high | high o
@ o1 high | low ©2 high | low ©h
N low | high ©3 low | high o
@ b2 low | low o low | low ol
Sal(E) | Rev | ¢/ (Sal(E), Rev)

@ high | high | ¢} = (o1 +¢1) /2

I high low | ¢

* !
3 )
@ ] low | high | ¢ = (03 + %) /2
)

low | low | ¢} = (pa+

StaRAl — Compressing Probabilistic Relational Models 39/52



The e-Advanced Colour Passing Algorithm

» Check for e-equivalence instead of strict equivalence between factors

SalA | Rev | ¢1(SalA, Rev) SalB | Rev | ¢3(SalB, Rev) Sal(E) | Rev | ¢ (Sal(E), Rev)
high | high 01 high | high A high | high | (¢14+¢})/2
high | low ©2 high | low A high | low (p2+¢5) /2
low | high ©3 low | high A low | high | (¢34 ¢5) /2
low | low 04 low | low o low low (pa+¢}) /2
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Bounding the Change in Query Results

» Bounds for m = 10 (left), m = 100 (middle), and m = 1000 (right) factors
» Dashed line: ¢ = 0.01, solid line: € = 0.001
» x-axes depict the original probability p, y-axes reflect the bound on the change in p

Bound Bound Bound
1 1 1gmmmmmmmmmm e
0.8 0.8 0.8 |
0.6 06| J 0.6 |
0.4 041/ 0.4
02 0.2 {/ 0.2
2 t t t t > 0+ —epm oy t t P 0+ f t t t ;
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

» Bounds apply to arbitrary queries and factor graphs
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The e-Advanced Colour Passing Algorithm — Experiments

» =-ACP is a generalisation of ACP that assigns identical colours to groups of
e-equivalent factors (instead of equivalent factors)

» Left: Comparison of run times for lifted inference

» Right: Quotients of query results p’ in the modified factor graph and p in the original

factor graph

10000 e-ACP _..-m 1.002 . g ,
2 o | [ ]
m = ACP T 1.001 g & :
£ 1000 . §
—~ ~1.000 —i—
= 100 .,1 0.999 f -
" ® [ | )
l:‘ T T 0998 T T T T T T T
0 50 100 2 4 8 16 32 64 128
domain size domain size
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The e-Advanced Colour Passing Algorithm — Summary

» Limited practical applicability of ACP solved
» Hyperparameter ¢ to control the trade-off between exactness and compactness

» Theoretical guarantees for the change in query results
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Lifted Model Construction with Unknown Factors

» How to handle unknown factors (i.e., factors with missing function definitions)?

1 2 3 £ ¢3

Malte Luttermann, Ralf Méller, and Marcel Gehrke (2023). »Lifting Factor Graphs with Some Unknown Factors«.
Proceedings of the Seventeenth European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU-2023). Springer, pp. 337-347.

Malte Luttermann, Ralf Méller, and Marcel Gehrke (2025). »Lifting Factor Graphs with Some Unknown Factors for
New Individuals«. International Journal of Approximate Reasoning 179, p. 109371.
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Lifted Model Construction with Unknown Factors — Overview

» What colour to assign to the unknown factors?

P> Potentials are missing
» Only available information: Surrounding graph structure
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Lifted Model Construction with Unknown Factors — Overview

» What colour to assign to the unknown factors?
P> Potentials are missing
» Only available information: Surrounding graph structure
» General idea:
1. Known factors are coloured according to their potentials
2. Unknown factors are coloured according to their 2-step neighbourhood
3. Assign unknown factors and known factors the same colour if their 2-step
neighbourhoods are symmetric
4. Run the standard ACP algorithm using the previously assigned colours
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2-Step Neighbourhood

» The 2-step neighbourhood of a factor ¢ contains all variable nodes directly connected
to ¢ and all factors that are direct neighbours of any variable node connected to ¢

» E.g., 2-step(¢p}) = {Comp.eve} U{pa, $3, $3}
o1 ¢t

0 ¢3

Salary.alice Salary.bob Salary.dave w
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2-Step Neighbourhood

» The 2-step neighbourhood of a factor ¢ contains all variable nodes directly connected
to ¢ and all factors that are direct neighbours of any variable node connected to ¢
» E.g., 2-step(¢3) = {Comp.eve, Salary.eve, Revenue} U {¢3, #3, 3, o, d3, ¢3}

o1 i

Comp.alice

— T~
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Symmetric 2-Step Neighbourhoods

> ¢; and ¢; have symmetric 2-step neighbourhoods if ¢; and ¢; have the same number
of neighbours and there is a one-to-one correspondence of the neighbours of ¢; and
¢; such that their observed events, ranges, and numbers of neighbours are identical
> E.g., 2-step(¢}) is symmetric to 2-step(¢1), 2-step(¢?), and 2-step(¢})

¢ 7

0 ¢}
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Symmetric 2-Step Neighbourhoods

> ¢; and ¢; have symmetric 2-step neighbourhoods if ¢; and ¢; have the same number
of neighbours and there is a one-to-one correspondence of the neighbours of ¢; and
¢; such that their observed events, ranges, and numbers of neighbours are identical
> E.g., 2-step(¢}) is symmetric to 2-step(¢1), 2-step(¢?), and 2-step(¢})

% ;
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Symmetric 2-Step Neighbourhoods

> ¢; and ¢; have symmetric 2-step neighbourhoods if ¢; and ¢; have the same number
of neighbours and there is a one-to-one correspondence of the neighbours of ¢; and
¢; such that their observed events, ranges, and numbers of neighbours are identical
> E.g., 2-step(¢}) is symmetric to 2-step(¢1), 2-step(¢?), and 2-step(¢})

aﬁ% ;

¢3 []
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Symmetric 2-Step Neighbourhoods

> ¢; and ¢; have symmetric 2-step neighbourhoods if ¢; and ¢; have the same number
of neighbours and there is a one-to-one correspondence of the neighbours of ¢; and
¢; such that their observed events, ranges, and numbers of neighbours are identical
> E.g., 2-step(¢}) is symmetric to 2-step(¢1), 2-step(¢?), and 2-step(¢})

¢ 7

7 ¢}
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Transfer of Potentials

» Potentials from known factors can be transferred to unknown factors
> E.g., 2-step(¢}) is symmetric to 2-step(¢1), 2-step(¢?), and 2-step(¢})
> E.g., 2-step(¢3) is symmetric to 2-step(¢3), 2-step(¢3), and 2-step(¢3)

CCompioh 2, Compaone
"
I Revenue l
> <

¢3 [ ¢35 [ .
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Transfer of Potentials

» Potentials from known factors can be transferred to unknown factors
> E.g., 2-step(¢}) is symmetric to 2-step(¢1), 2-step(¢?), and 2-step(¢})
> E.g., 2-step(¢3) is symmetric to 2-step(¢3), 2-step(¢3), and 2-step(¢3)

¢ O

CCompto 3,
"
==
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Transfer of Potentials

» Potentials from known factors can be transferred to unknown factors
> E.g., 2-step(¢}) is symmetric to 2-step(¢1), 2-step(¢?), and 2-step(¢})
> E.g., 2-step(¢3) is symmetric to 2-step(¢3), 2-step(¢3), and 2-step(¢3)

¢l ¢t O o
Comp.alice d) Comp.dave
2

=

[ >

¢3 [
Salary.alice
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The Lifting Factor Graphs with Some Unknown Factors Algorithm

> 2-step neighbourhoods to assign colours (and possibly potentials) to unknown factors

SalA | Rev | ¢1(SalA, Rev) SalB | Rev | ¢2(SalB, Rev) Sal(E) | Rev | ¢{(Sal(E), Rev)
high | high ©1 high | high 7> ¢ high | high ©1

high | low v high | low 7= @ high low ©9

low | high ©3 low | high ?7 = 3 low high w3

low | low N low | low 7= @y low low ©4
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Lifting Factor Graphs with Some Unknown Factors — Experiments

» Generate factor graphs where all factors are known

» Randomly remove potentials of 5-10 percent of the factors

» Run the Lifting Factor Graphs with Some Unknown Factors algorithm to obtain a

lifted representation
» Perform probabilistic inference on the ground truth and the lifted representation
0.0015 4

8 0.0010
c
&0 0.0005 1
£ 0.0000+
o
_1-0.0005 -
* 0.0010

0 100 200
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Lifting Factor Graphs with Some Unknown Factors — Summary

» Lifted model construction with unknown factors solved
» Transfer of known potentials to unknown factors

» Establishment of a well-defined semantics if possible

91 i 0 ¢t ¢?
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1. Introduction to relational models [Marcel]
2. Compressing probabilistic relational models [Malte]
3. Application: Lifted causal inference [Malte]

» Lifted computation of causal effects
» Lifted computation of causal effects with partial causal knowledge

4. Summary [Marcel
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