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AGENDA

Introduction to relational models [Marcel]

Especially thanks to Tanya
= Relational models under uncertainty Braun for providing many of

=  Obtaining a compressed representation the slide

2. Compressing probabilistic relational models [Malte]
3. Application: Lifted causal inference [Malte]

4. Summary [Marcel]
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GENERAL AGENT SETTING

What the world
How the world evolves o
is like now

, What it will be like
What my actions do if | do action A

How happy | will be
4 in such a state
What action |
should do now
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RELATIONAL MODELS UNDER UNCERTAINTY

INTRODUCTION




STATISTICAL RELATIONAL ARTIFICIAL INTELLIGENCE (STARAI)

Al: intelligent systems

The world has in the real world The world is
things in it! uncertain!

[ First-order logic ] graphical models

Probabilistic ]

The WOl’|.d is The world has
uncertain! : S
things in it!

Statistical Relational
Artificial Intelligence

—
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LOGICALVARIABLES IN RANDOM VARIABLES

®  Atoms: Parameterised random variables = PRVs

= With logical variables Nat(D) = natural disaster D
= Eg,X,M Acc(A) = accident A

= Possible values (domain):
dom(X) = {alice, eve, bob}
dom(M) = {injection, tablet}
= With range

= E.g,Boolean, but any discrete, finite set possible

= Represent sets of indistinguishable random variables
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PARFACTORS

®  Factors with PRVs = parfactors Potentials
* In parfactors, just like in factors,

M) St Swddd) gy no probability distribution as

false  false false 57 factors required

false  false true

false true false

false true  true

true false true

true true false

0
4
6
true false false 4
6
2
9

true true true
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Travel(eve) Epid Sick(eve) g,

EACTORS B Travel(bob) Epid Sick(bob) g,
4 false false
false true  true 6 false  false  true 0
=  Grounding true false  false 4 false true false 4
IR, 7 vel(alice) Epid_sick(alice) g, I
false  false false 5 true tru false false false 5 false 4
false  false true 0 true tru false false true 0 true 6
false  true false 4 false true false 4 | false 2
false true  true 6 false true true 6 true 9
true  false false 4 true false  false 4
true  false true 6 true false true 6 @
true true false 2 true true false 2
true true  true 9 true true true 9
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GROUNDED MODEL

Given domains
= dom(X) = {alice, eve, bob}
= dom(M) = {my,m,}

= dom(D) = {flood, fire}

= dom(W) = {virus,war} le

Travel.bob

' m

5 @
. |
||
Treat.bob.m
Travel eve
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MARKOV LOGIC NETWORKS (MLNYS)

= Weighted logical formulas to soften otherwise hard constraints
[Richardson & Domingos 06]

= |mplicitly connected via conjunction

= e, set of formulas ; = knowledge base/theory

= Worlds that violate constraint become less likely but not impossible

= As w; increases, so does the strength of {;

® Infinite weight: Hard constraint = pure logic formula

= Probabilities of worlds that do not satisfy hard constraint set$ Hard constraint
O

Soft constraint, ° oo Presents(X,P,C) = Attends(X, C)

weight = exp(3.75)

Q0. 3.75 Publishes(X, C) A FarAway(C) = Attends(X, C)
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GROUNDING

= Each (w;, ;) represents a set of propositional sentences, each sentence with weight w;

= One sentence for each possible substitution of the free variables free(y;) in Y; given a finite domain (or a constraint set)

D over free(;) (10, Presents(alice, py, ijcai) = Attends(alice, ijcai))
= 6p = UgeplUrealXa — t}} (10, Presents(alice, p,, kr) = Attends(alice, kr))

= Example: MLN W = {(w;, ¥}, (10, Presents(alice,p,, ijcai) = Attends(alice, ijcai))
= Domains (10, Presents(alice, p,, kr) = Attends(alice, kr))

= dom(X) = {alice} (3.75, Publishes(alice,ijcai) A FarAway(ijcai) = Attends(alice, ijcai))
= dom(P) = {py, p,} (3.75, Publishes(alice, kr) A FarAway(kr) = Attends(alice, kr))

= dom(C) = {ijcai, kr
(©) = {ijcai, kr} 10 Presents(X, P, C) = Attends(X, C)

®  Groundings on the right

3.75 Publishes(X,C) A FarAway(C) = Attends(X, C)
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MLNS: SEMANTICS

= MLN Y = {(w;, ;) }L, with w; € R, induces a probability distribution over all possible interpretations w (world)
of the grounded atoms in ¥

w € {true, false}V

= N = the number of ground atoms in the grounded ¥

" Probability of one interpretation w

171 1 S
Pw) == | [exp(wi (@) =Zexp( ) wini(w)
i=1 i=1

= 1n;(w) = number of propositional sentences of ; that evaluate to true given the assignments of w
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Presents(X,P,C) | Attends(X, ()

MLN: GRAPHICAL REPRESENTATION?

false false exp 10

false true exp 10

= Usually not depicted by a graph but by the logical true false exp 0
formulas with their weights to the left e SeE exp 10

= Since the name invokes Markov networks, which is a
graphical model, let us build an analogue:

" Logical atoms as nodes Qresents(X, P, C)

= Edges between atoms whenever atoms occur
together in a formula

Publishes(X, C)

FarAway(C)

=  Each y; forms clique in graph

" Potential function ¢; for each clique from weights using 10 PT‘BSQTLtS(X P C) = AttendS(X C)
exp w; for each model and exp 0 otherwise — ‘

3.75 Publishes(X,C) A FarAway(C) = Attends(X, C)
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FROMWEIGHTED FORMULASTO
ARFACTORS

false false exp 10

false true exp 10

= MLNs with their logical formulas have the same value true false exp 0
w; for each interpretation the satisfies 1; Frie e exp 10

= Allowing for different values for each interpretation,
i.e., arbitrary distributions in potential functions

Qresents (X,P,0C)
= Parfactor: Factor (potential function) whose

arguments are parameterised with logical variables

Publishes(X, C)

—  Set of parfactors

FarAway(C)

=  An MLN can be translated into a set of parfactors and

\[/\i/ce v(;ersaB i 10 Presents(X, P, C) = Attends(X, C)
an den broec

3.75 Publishes(X,C) A FarAway(C) = Attends(X, C)
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SEMANTICS

= Distribution semantics (aka grounding or Herbrand semantics) [Sato 95]

= Completely define discrete joint distribution by factorisation
" Probabilistic extensions to Datalog [Fuhr 95]
= Relational Bayesian networks [Jaeger 97]
= Bayesian Logic Programming [Milch et al. 05], ProbLog [De Raedt et al. 07]
" Parfactor models [Poole 03, Taghipour et al. 13, Braun & Moller 18, G et al. 19]
= Markov logic networks (MLNs) [Richardson & Domingos 06]

" Probabilistic Soft Logic (PSL) [Bach et al. 7]

= Define density function using log-linear model

= Maximum entropy semantics [ Thimm et al. 10]

" Partial specification of discrete joint with “uniform completion”
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INFERENCE PROBLEMS WITH AND WITHOUT EVIDENCE

10 Presents(X,P,C) = Attends(X,C)

= Query answering problem given a model:

3.75 Publishes(X,C) A FarAway(C) = Attends(X, C)

"  Probability of events
= E.g, P(Att(eve, kr) = true), P(Epid = true)
= Conditional (marginal) probability distributions

= Eg,
P(Att(ev, kr)|FarAway(kr)), P(Epid|sick(alice), sick(eve))

= Assighment queries:
= Most probable states of random variables

=  Most-probable explanation (MPE), Maximum a posteriori (MAP)

= Lifted inference:
Work with representatives for exchangeable random
variables [Niepert & van den Broeck 14 ]

®  Avoid grounding for as long as possible
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QA IN PARFACTOR MODELS: LIFTED VARIABLE ELIMINATION (LVE)

= Eliminate all variables not appearing in query
|
= Lifted summing out
= Sum out representative instance as in propositional variable elimination

= Exponentiate result for exchangeable instances

= Correctness: Equivalent ground operation
= Each instance is summed out
= Result: factor f that is identical for all instance

= Multiplying indistinguishable results
— exponentiation of one representative f

StaRAI — Compressing Probabilistic Relational Models
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QA: LVE IN DETAIL

®  Eliminate
= Appears in only one g: g3
= Contains all logical variables of g3: X, M
" For each X constant: the same number of M constants

v Preconditions of
lifted summing
out fulfilled,
lifted summing
out possible

Treat(eve, M)

X € {alice, bob)
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LVE IN DETAIL: LIFTED SUMMING OUT

= Eliminate by lifted summing out

|.  Sum out representative

g3 (Epid = e, Sick(X) = s, ) \@

Yo
1 40
93
ob) CSick(X) >
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LVE IN DETAIL: LIFTED SUMMING OUT

g3 (Epid = e, Sick(X) = s, )

Sick(X) Treat(X,M) g5 Epid Sick(X) X Epid Sick(X) *

false false false 94 : : | : : -
10 10
Ifalse false true 1 I false false | false false
false true false 6 |
| false true 9 | false true 92
| false true true 3]
true false false 74 |
| true false 12 true false 12°
| true false true 5~
true  true false 4 |
| true  true 12 true true 122
| true __ true true 38 |
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SYMMETRIES WITHIN

= Assume four epidemics with identical characteristics false true false false

*  Epidy, Epidy, Epids, Epid, false true false true

8
6
6
4
6
4
4

= Reasonable to model the epidemics such that it does not matter which Epid false true true false

variables specifically are true or false,i.e., they are interchangeable

true false false false

= CRV:#g[Epid(E)] SN i [Epid(E)] ¢ #raise true false false true
= Range values — true false true false
[0,4], [1,3],[2,2], [3,1], [4,0] (0,4 8 / f
6
4

1 4 6 1 [1 3]

how many assignments encoded

[2,2] true true false false 4

= g = ¢GH[Epid(E)])

[4,0] 0
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CRVS CONTINUED

= (P)CRV #y [A|C] with = Range of a (P)CRV = space of histograms fulfilling the

conditions on the histograms
= m = |ran(4)| (number of buckets) &

m (Al possible ways of distributing n interchangeable

_ym . _ : \ :
" N= L= = |.97”(A|nx(c))| (number of instances to instances into m buckets)

distribute into buckets)
= Single histogram encodes several interchangeable

" |nstead of mappings in the ground factor, assignments at once
the counted factor has
= Given by multinomial coefficient Mul(h)
(n +m — 1) |
. i=1 1!
mappings

= |[f m = 2, binomial coefficient:

= Upper bound of range size of a CRV:

(n)_ n! _on!
(n+m1_ 1) < nm n/ (m—-ny)ln! nyln,!
n—
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SELECTED INFERENCE ALGORITHMS FOR MLNS AND PARFACTOR

MODELS

Static

L] Exact:

Lifted Variable Elimination [Poole 03]

Lifted Junction Tree [Braun & Moller 18]

First-order Knowledge Compilation [Van den Broeck et al. |1]
Probabilistic Theorem Proving [Gogate & Domingos 11]
CRANE [Dilkas & Belle 23]

FAST WFOMC [van Bremen & Kuzelka 20]

= Approximative

Lifted Belief Propagation [Ahmadi et al. |3]
Weighted First-order Model Sampling [Wang et al. 24]
Lifted MCMC [Niepert 12]

Lifted Importance Sampling [Gogate et al. | ]

StaRAI — Compressing Probabilistic Relational Models

Temporal

Exact

m Lifted Dynamic Junction Tree Algorithm [G et al. 19]
Approximate

m Lifted Factored Frontier Algorithm [Ahmadi et al. 13]

m Online Inference Algorithms [Geier & Biundo | I, Papai et al. 12]

Marcel - Intro
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OBTAINING A COMPRESSED REPRESENTATION

INTRODUCTION




PROBLEM: ADDING OBJECTS AND RELATIONS IN PROPOSITIONAL FORMALISMS
CLUNKY...
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PROBLEM: ... AND MODELS EXPLODE WITH THEM

f1
Nat.flood l‘l w L]
‘. fo
: Epid 0 f




PROPOSITIONAL — FIRST-ORDER VIEW

p Travel.bob
CSick.bob >

Treat.bob.m,

Treat.alice.m,

f2 3

Travel.eve
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Symmetries in graph / relations in scenario



PROBLEM: ... LEARNED FROM DATA MORE LIKE THIS

Csdfghsf >
‘

dafgadrfg
f3
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COMPRESSION

= |nitialisation: Colour nodes and factors

= | colour for the
nodes: © f1

® 4 colours for the
factors:om ®m O

f2 f2

f3 f3

fZ 3
f3 f3
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COMPRESSION

|.  Factors collecting colours from nodes
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COMPRESSION

2. Factors signing their own colours
to the collected ones
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HO
HOe & O
HO O O
COMPRESSION Heeeo
® 00
mO O O
WO O O
3. Nodes collecting colours from factors =8 88
113
0O O O f WO O O
WO O O
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COMPRESSION

Recolour nodes based on collected
signatures

® 5 colours for the
nodes:0 @ @ @ @

= Factors as before

f2

Treat.alicemy Treat.bob.m,
Travel.alice Travel. bob

Treat.eve.my
Sick.alice Sick.bob

Sick.eve
Treat.alice.m, Travel.eve Treat.eve.m, Treat.bob.m,
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COMPRESSION

5. If no new colour created, stop.
Otherwise, pass colours again.

= Before: ©

f

= Afterroo0 @0 Nat.flood

= New colours

— Go to Step |

f2 f2

Treat.alicemy Treat.bob.m,
Travel.alice Travel. bob
Treat.eve.my

Sick.alice Sick.bob

Sick.eve
Treat.alice.m, Travel.eve Treat.eve.m, Treat.bob.m,
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COMPRESSION

Factors collecting colours from nodes

Nat.flood

Treat.alicemy
Travel.alice Travel.bob

Sick.alice Sick.bob

Sick.eve
Treat.alice.m, Travel.eve Treat.eve.m, Treat.bob.m,
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COMPRESSION

Factors signing their own colours to
the collected ones

0000 f; OQ.

Treat.alicemy
Travel.alice Travel.bob

Sick.alice Sick.bob

Sick.eve
Treat.alice.m, Travel.eve Treat.eve.m, Treat.bob.m,
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S o] NS EEEEE
OO0O0O0OOOOLX X X X X

Treat.alice.m, Traveleve Ntex XL Ireat.evem, Treat.bob.m,
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COMPRESSION

Recolour nodes based on collected
signatures

® 5 colours for the
nodes:0 @ @ @ @

= Factors as before

f2

Treat.alicemy Treat.bob.m,
Travel.alice Travel. bob

Treat.eve.my
Sick.alice Sick.bob

Sick.eve
Treat.alice.m, Travel.eve Treat.eve.m, Treat.bob.m,
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COMPRESSION

5. If no new colour created, stop.
Otherwise, pass colours again.

= Beforeecoo0o @ @eo fi
] Nat.flood

= Afterrooe0 @0

f2

Treat.alicemy Treat.bob.m,
Travel.alice Travel. bob

Treat.eve.my
Sick.alice Sick.bob

Sick.eve
Treat.alice.m, Travel.eve Treat.eve.m, Treat.bob.m,
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COMPRESSION

Treat(X, M)
=  Compressed graph*™

*  Colour passing algorithm does
not introduce logical variables f,
— additional work necessary Nat_flood

Treat.alicemy Treat.bob.m,

Travel.alice Travel.bob
Treat.eve.my

Sick.alice Sick.bob

Sick.eve
Treat.alice.m, Travel.eve Treat.eve.m, Treat.bob.m,
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AGENDA

|. Introduction to relational Models [Marcel]

2. Compressing probabilistic relational models [Malte]
= Advancing the state of the art to obtain an exact compressed representation
= Approximating a compressed representation with known error bounds

= Handling unknown factors

3. Application: Lifted causal inference [Malte]

4. Summary [Marcel]
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*PRMs are a true backbone of Al, and this
tutorial emphasized only some central
topics.We definitely did not cite all
publications relevant to the whole field of
BI B LI O G RAPHY PRMs here.We would like to thank all our
colleagues for making their slides available
(see some of the references to papers for
respective credits). Slides or parts of it are
almost always modified.
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