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Abstract 64 

Fisheries worldwide face uncertain futures as climate change manifests in environmental effects 65 

of hitherto unseen strengths. Developing climate-ready management strategies traditionally 66 

requires a good mechanistic understanding of stock response to climate change in order to build 67 

projection models for testing different exploitation levels. Unfortunately, model-based 68 

projections of fish stocks are severely limited by large uncertainties in the recruitment process, 69 

as the required stock-recruitment relationship is usually not well represented by data. An 70 

alternative is to shift focus to improving the decision-making process, as postulated by the 71 

Decision-Making under Deep Uncertainty (DMDU) framework. Robust Decision Making 72 

(RDM), a key DMDU concept, aims at identifying management decisions that are robust to a 73 

vast range of uncertain scenarios. Here we employ RDM to investigate the capability of North 74 

Sea cod to support a sustainable and economically viable fishery under future climate change. 75 

We projected the stock under 40000 combinations of exploitation levels, emission scenarios 76 

and stock-recruitment parameterizations and found that model uncertainties and exploitation 77 

have similar importance for model outcomes. Our study revealed that no management strategy 78 

exists that is fully robust to the uncertainty in relation to model parameterization and future 79 

climate change. We instead propose a risk assessment that accounts for the trade-offs between 80 

stock conservation and profitability under deep uncertainty. 81 
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Introduction 93 

Fisheries worldwide face uncertain futures as climate change manifests in environmental effects 94 

of hitherto unseen strengths [1, 2]. Developing climate-resilient management strategies 95 

traditionally requires well-supported mechanistic hypotheses of how fish stocks respond to the 96 

effects of climate change in order to build projection models to be tested with different degrees 97 

of exploitation [3]. Model-based projections of marine social-ecological systems including 98 

fisheries are however notoriously impeded by uncertainty about key ecological processes [4, 5, 99 

6]. Such uncertainty often arises from limitations in the understanding of their intricate 100 

mechanisms and their relationships to physical variables like temperature. Resulting simplified 101 

models reflect a general consensus about the most basic mechanisms, e.g. models describing 102 

larval dispersal contain well-known hydrodynamic processes but not poorly-understood effects 103 

of larval behaviour (e.g. [7]). In fisheries science, a major challenge is the prediction of the 104 

strength of the incoming year-class as a basis for setting future fishing opportunities for the 105 

industry [3, 8]. This “recruitment” process is the result of a multitude of complex biological 106 

processes such as growth-rate variability [9, 10] and physical processes like larval drift [11, 12, 107 

13]. Prediction of the number of incoming offspring is hence usually based on the assumption 108 

that the size of the mature population, the spawning stock biomass (SSB), is the main predictor 109 

[14]. The nature of mechanisms that go beyond this most basic assumption, such as the 110 

importance of environmental variability or the role of feedback effects of recruitment on SSB 111 

[15], are subject to debate (e.g. [16, 3]). Hence, lacking ecological understanding and limited 112 

data quality and quantity cause the existence of multiple interpretations about the responsible 113 

factors and the functional forms of these “stock-recruitment” (SR) relationships. 114 

The inability to agree on the mechanisms behind critical processes in a dynamic system is a key 115 

characteristic of the theoretical concept of “Deep Uncertainty” [17]. In the decision-making 116 

literature, Deep Uncertainty (DU) is considered to be the strongest level of uncertainty (e.g. 117 

[18, 19]). DU is characterized by situations in which experts are unable to find intellectual 118 

consensus on the mechanisms behind system processes, where a quantification of uncertainty 119 

(e.g. in the form of probability distributions) is not possible, or where unpredictable events are 120 

known to occur [20]. With respect to forecasting this means that the number of scenarios to be 121 

considered would be large and not necessarily limited to a few discrete instances. In contrast to 122 

DU, lower levels of uncertainty are characterized by either the possibility to predict 123 

probabilistically (i.e. based on probability density or on different levels of plausibility) or by 124 

the possibility to formulate a low number of discrete, equally plausible futures [20]. 125 
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DU is increasingly considered in projections of management systems expected to become 126 

severely affected by climate change, e.g.in water management [21] and ski resorts [22]. 127 

However, modeling of ecological systems and population modeling tends to ignore the 128 

existence of this strong uncertainty level. For example, Management Strategy Evaluation 129 

(MSE), an extended version of modeling fisheries systems under various candidate 130 

management strategies, usually performs projections under several scenarios that are assigned 131 

a plausibility rank. This rank is based on expert knowledge, and the scenario outcomes are 132 

weighted based on plausibility in order to assess the vulnerability of the management strategy 133 

candidates [23]. Within MSE, but also in stock projections in general, recruitment of fish stocks 134 

is often projected via statistical parameter estimates of the SR model to which residuals from 135 

the observations are added randomly (e.g. [24]). The usage of the mean SR model parameter 136 

estimates often assumes that recruitment uncertainty can be characterized by probability. Such 137 

an approach can be considered as an example of an “expected-utility framework”, 138 

characterizing decision-making approaches where scenarios are assigned subjective 139 

probabilities [25]. 140 

Yet there are clear indications that working with plausibilities and probabilities have limitations 141 

in applied modeling like MSE, because it is often difficult to find consensus on the plausibility 142 

of a certain scenario [23]. Consequently, fish stock dynamics are likely subject to higher levels 143 

of uncertainty than currently recognized, which can limit the utility of the MSE approach that 144 

is more constrained by i.a. relatively high complexity and related data dependency [26]. 145 

Furthermore, such uncertainty is not simply due to lacking knowledge, but of ambiguous nature 146 

that is symptomatic to DU problems, and may lead to poor decision-making caused by narrow-147 

focused analyses [27]. Howell et al. [28] recognized this problem, found the uncertainty in 148 

population size projected under different SR hypotheses to be “unquantifiable”, an attribute of 149 

DU [20], and proposed a wide range of scenarios to perform MSE with. [29] characterized the 150 

ignorance of DU as a major concern in long-term planning of ecosystem management, including 151 

fisheries management, and advocated to widen the range of uncertainty considered and the 152 

development of strategies robust against it. 153 

The science of dealing with such high-level uncertainties, formally known as “Decision-154 

Making under Deep Uncertainty” (DMDU), has seen the development of a number of concepts 155 

that address the difficulty in performing precise projections from a practical, management-156 

based point-of-view [20]. The most popular of these is the exploration-based “Robust Decision 157 

Making” (RDM) used to analyze and stress-test candidate management strategies [30, 31]. 158 
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Other DMDU approaches are Dynamic Adaptive Planning [32, 33] and Dynamic Adaptive 159 

Policy Pathways [34], which focus on specifying rules for decision adaptation over time or the 160 

prior formulation and evaluation of alternative decision routes. 161 

Common to all DMDU approaches, but to RDM in particular, is the proposition to shift 162 

emphasis from improving model predictions to improving management decisions [25]. This 163 

proposition is based on the observation that improving predictions often involves increasing 164 

model complexity, which in turn increases the number of uncertain factors, and that better 165 

predictive capability does not necessarily result in better decision-making [35]. The aim of 166 

RDM is thus to increase an understanding about the consequences of management actions under 167 

a large spectrum of possible scenarios, and to help define a management strategy that achieves 168 

the desired outcomes under DU, i.e. is robust to a multitude of different but equally possible 169 

futures [36]. To this end, RDM employs the generation of a large number of model projection 170 

runs for each candidate management strategy. Each run represents one uncertain scenario; these 171 

scenarios can include discrete scenarios, such sampled from a continuous range or a 172 

combination thereof. Results from these runs are then aggregated and investigated using e.g. 173 

Machine-Learning or visualization tools to i) determine the importance of uncertain parameters 174 

in achieving management objectives (exploratory modeling), ii) determine conditions under 175 

which a candidate strategy fails or succeeds (scenario discovery) and iii) unveil potential trade-176 

offs between multiple objectives [31]. Insights yielded from these analyses are often used to 177 

update management strategy candidates, which are then again subjected to modeling under the 178 

same range of uncertain scenarios. Once the RDM analyses are completed, a candidate strategy 179 

that fulfils the desired outcomes to the greatest extent possible under the largest number of 180 

scenarios is chosen for implementation [30]. 181 

The consideration of DU and the usage of DMDU methods have been explicitly proposed for 182 

fisheries management [37, 38], though RDM has as yet not been put into applied use in the 183 

research field. Here we apply the RDM framework to uncover robust management strategies 184 

for North Sea cod (Gadus morhua L.) under future climate change. North Sea cod is one of 185 

Northern Europe’s most valuable ground-fish stocks, yielding a landings value of 186 

approximately 7 billion US$ (1986-2010), with potential economic value under more effective 187 

management estimated as approximately 19 billion US$ [39]. While historically it was a highly 188 

productive resource with catches up to 550 kt estimated for the 1980s [40], North Sea cod is 189 

currently in a low productive state which yields annual catches of 40-50 kt only [41]. The low 190 

productive state of North Sea cod is the result of phases of severe overexploitation in the second 191 
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half of the 20th century and failed rebuilding attempts in the early 21st century [42, 43] which 192 

may be the result of climate-driven state shift in productivity [44] via a negative effect of 193 

temperature increase on recruitment [45, 46]. With temperature increase expected to continue, 194 

and climate effects projected to lead to biomass decreases globally [1, 2], and reorganizations 195 

of ecosystems in general [48, 49], sustainable future management is becoming both more 196 

complicated and more necessary. Nevertheless, given its economic importance, rebuilding and 197 

maintaining North Sea cod is of high importance for the fisheries involved. 198 

We here applied the RDM approach to quantify the potential for both ecologically and 199 

economically sustainable management given uncertainties in the recruitment process and the 200 

future course of climate change, and to characterize sustainable management strategies. We 201 

formulated the results of our study in a risk analysis and trade-off-mapping framework that 202 

allowed us to illuminate the potential of sustainably managing North Sea cod under DU. 203 

 204 

Methods 205 

Our study follows robust decision making (RDM) protocols [50, 31, 25] that consist of A) 206 

identification of the decision-making problem and of decision alternatives, B) specification of 207 

the system structure, i.e. the model used to simulate the effects of management decisions, C) 208 

identification of system uncertainties, D) development of (potentially conflicting) management 209 

objectives, and E) exploratory modeling (EM) (Fig. 1). EM comprises multiple model 210 

projections followed by a multi-way analysis of the simulation results with respect to 211 

management objectives [25]. 212 

 213 

Decision alternatives 214 

The decision-making problem in the context of planning long-term fisheries management 215 

implies finding exploitation strategies that maintain the stock in a safe biological state while 216 

yielding acceptable profits for the fishers who depend on the stock for income [51]. The optimal 217 

decision, in accordance with RDM theory, would achieve these aims under a large variety of 218 

assumptions about future recruitment dynamics, and would do so under any possible future 219 

development of climate change [30]. We here considered two exploitation metrics, i.e. i) 220 

constant catch in tonnes of fish stock biomass, and ii) constant harvest rate, i.e. a fixed ratio of 221 

catch to stock size. Both metrics are used as regulatory metrics in fisheries management to 222 

maintain or achieve a safe biological level, but have different advantages and disadvantages 223 

[52, 53]. Constant catch rules theoretically provide stable catches, but may lead to excessive 224 
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exploitation rates at low stock sizes. In contrast, catches equal to a fixed proportion of the 225 

current stock size (essentially reflecting constant fishing mortality) are more responsive to 226 

fluctuations in stock size [54]. In our analysis, decision alternatives for each model run, i.e. the 227 

level of catch or the level of harvest rate, were kept constant over all projection years to 228 

investigate the long-term viability of each exploitation level. 229 

 230 

Model system 231 

We projected the stock dynamics of North Sea cod for the period 2030 – 2100 using an age-232 

based single-species population model [55] where cohorts of equal-aged fish are subject to 233 

decrease over time due to fishing, i.e. catch or harvest rate translated to fishing mortality (F), 234 

and natural mortality (due to predation and other causes). SSB is calculated as the number of 235 

fish per age-class, their age-specific weight and maturity rates. The stock is replenished 236 

annually by recruits (age individuals) depending on both the amount of SSB and on 237 

environmental pressures. We employed SSB – recruitment (SR) models that include the effect 238 

of sea-surface temperature (SST) on offspring production (see below). As a major 239 

environmental driver, temperature is frequently applied in the modeling of future management 240 

of fisheries (e.g. [56]) and in the design of SR models in particular [57]. We initialized 241 

population size at a level equalling MSY Btrigger (Supplementary Methods 1) to investigate the 242 

impact of DU on management strategies under relatively favourable stock conditions and thus 243 

check for potential management challenges beyond stock rebuilding. 244 

Our population model of the North Sea cod stock is coupled to an economic model that 245 

computes future profits for the fishery [58]. Profits are based on revenues derived by assigning 246 

specific market prices to fish of specific weight, as well as costs. Costs increase with catch, due 247 

to e.g. increased requirements for storage capacity and work power. Further details on the 248 

population- and economic models are given in the appendix (Supplementary Methods 1 and 4, 249 

Supplementary Table 1). 250 

Historical stock data for North Sea cod were obtained from the ICES (International Council for 251 

the Exploration of the Sea) Working Group on the Assessment of Demersal Stocks in the North 252 

Sea and Skagerrak (WGNSSK [41]). SST observation data for fitting the SR models were 253 

retrieved from the NOAA Extended Reconstructed Sea Surface Temperature (ERSST) dataset, 254 

version 5 [59]. SST projection data were obtained from a regional ocean model [60], and were 255 

bias-corrected against the ERSST data (simple mean bias correction [61]). Pricing data were 256 

obtained from the German federal office for agriculture and food [62]. 257 
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 258 

Uncertainties 259 

The relationship between SSB, environmental pressures and recruitment is usually subject to 260 

strong uncertainty due to the large number of unobserved physical and biological processes 261 

involved and the often low amount of high quality data. We hence conducted our RDM analysis 262 

around several recruitment scenarios, which were defined by three sources of uncertainty: 263 

Functional form of the SR relationship – The relationship between SSB, environmental 264 

pressures and recruitment is most commonly modeled via the Ricker [63] and Beverton-Holt 265 

[64] relationships or their environmentally-sensitive extensions [65, 66]. Both models describe 266 

initially positive linear effects of SSB, a negative exponential effect of SSB reflecting 267 

population and ecosystem capacity limitations and resulting in either asymptotic (Beverton-268 

Holt) or decreasing recruitment (Ricker) at high SSB, and a negative exponential effect of SST 269 

(Eq. (1); see also Supplementary Methods 2, Supplementary Figure 1). The high degree of 270 

unexplained recruitment variability and lack of recruitment data for very high levels of SSB 271 

makes the “true” underlying functional form often unclear [67]. We hence performed our stock 272 

projections with both SR models to account for this ambiguity. 273 

𝑅𝑡+1 = 𝑁𝑡+1,1 = 𝑒−𝛾𝐸𝑡
𝛼𝑆𝑆𝐵𝑡

1 + 𝛽𝑆𝑆𝐵𝑡
 274 

(1) 275 

𝑅𝑡+1 = 𝑁𝑡+1,1 = 𝛼𝑆𝑆𝐵𝑡𝑒
−𝛽𝑆𝑆𝐵𝑡−𝛾𝐸𝑡 276 

Equation 1. Environmental Beverton-and-Holt [66] (top) and Ricker [65] (bottom) stock-recruitment-model 277 
equation. The strength of the positive linear effect of SSB on recruitment is given by α (recruitment increases with 278 
increasing SSB). The limitation of recruitment (or its reduction) through SSB is parameterized by β (ecosystem 279 
carrying capacity or other density-related effects like cannibalism). The strength of environmental pressure on 280 
recruitment is described by γ. R = recruitment, N = population number, SSB = spawning-stock biomass, E = 281 
environmental variable 282 

We ascertained the adequacy of the environmentally-sensitive SR functions through 283 

comparison with a hockey-stick SR function, which is the SR function currently employed by 284 

the ICES assessment to describe the SR relationship for North Sea cod [41], and other climate-285 

insensitive SR functions, in terms of AIC, deviance explained and visual inspection of fit 286 

(Supplementary Methods 7). 287 

SR model parameterization – SR models only describe very basal assumptions about the effects 288 

of SSB and environmental pressures on recruitment, and often fit the data poorly, resulting in 289 

wide confidence intervals of parameter estimates [7, 57]. In addition to unexplained processes 290 
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that modify the basal “true” SR relationship, the existence of a singular continuous SR 291 

relationship for a given stock itself is challenged by observed “low-recruitment regimes” [68] 292 

and statistical evidence for highly non-linear or discontinuous SR dynamics [45]. We here 293 

considered a wide array of continuous SR relationships defined by parameter values sampled 294 

from the standard-error range of the statistical estimates (SR equations were re-arranged and 295 

logarithms of SSB-related parameters were fitted to avoid sampling biologically meaningless 296 

negative parameter values; Supplementary Methods 2). We considered the standard-error range 297 

as an estimate of the range of possible SR relationships with equal probability, i.e. the bounds 298 

of uniform distributions to sample from (Tab. 1) (we traded in homoscedascity on the current 299 

recruitment time series for covering potential future SR relationships). SR relationships most 300 

notably and strongly differed in maximum attainable levels of recruitment (Supplementary 301 

Figure 2). In the context of model projections, this range of SR relationships serves as an 302 

expression of the overall deep uncertainty in predicting future recruitment, rather than as a set 303 

including one “true” but unknown future SR relationship. 304 

Future development of climate change – The future of climate change depends primarily on 305 

current and future mitigation measures to reduce carbon emissions [69]. Multiple future 306 

pathways of future carbon emissions, the Representative Concentration Pathways (RCP), have 307 

been lined out and used to force global and regional climate models that simulate future climate 308 

development on a spatial scale [70]. Naturally, implementing climate mitigation measures is 309 

not in the purview of fisheries management. Future warming, i.e. an increase of SST, is thus an 310 

uncertainty for future recruitment and stock development. We forced the cod population model 311 

with projected North Sea SST data for the RCP4.5- and RCP8.5 emissions scenarios, i.e. a 312 

“middle-of-the-road” mitigation- and a “business-as-usual” scenario, respectively, through the 313 

recruitment process (negative effect of SST on recruitment). These scenarios correspond to 314 

different degrees of future SST increases, with increases above the observed maximum 315 

occurring more frequently and with a larger magnitude in the latter (Supplementary Methods 316 

3). Data were obtained from a North Sea regional ocean model [60]. 317 

 318 

Objectives 319 

Fisheries management in the European Union applies the Maximum Sustainable Yield (MSY) 320 

framework that proposes that under a distinct level of F (i.e. FMSY) a stock in safe biological 321 

limits can maintain a high level of average catch quasi-indefinitely [71]. Accordingly the MSY 322 

concept is the basis against which the International Council for the Exploration of the Sea 323 

(ICES) evaluates exploitation and stock status, and gives advice on total allowable catch [71, 324 
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72]. Management reference points for this approach are the target F, FMSY, that theoretically 325 

generates MSY, and a precautionary limit biomass level that triggers management action (BPA 326 

or MSY Btrigger) that is used to decrease F at too low biomasses. While both higher and lower F 327 

levels will generate lower average yield, exceeding FMSY also puts the stock at risk of decreasing 328 

population numbers and FMSY is therefore considered a limit to be avoided [73]. We considered 329 

both reference points, i.e. achieving F ≤ FMSY and SSB ≥ MSY Btrigger as objectives in our stock 330 

simulations. MSY reference points were set to those currently used in the stock assessment of 331 

North Sea cod, i.e. FMSY = 0.28 and MSY Btrigger = 97.8 kt, which are derived from projections 332 

with a climate-insensitive hockey-stick SR model [68]. We consider these reference points from 333 

a conservationist perspective, i.e. as limits to overall good stock status (MSY Btrigger) and 334 

acceptable fishing pressure (FMSY), and hence do not calculate custom reference points specific 335 

to the climate-sensitive SR relationships used in our projections (which, as noted above, have 336 

a more expressive rather than true mechanistic meaning). This consideration differs from 337 

operational management, where reference points are often adapted to changes in productivity 338 

[74] (as is the case for ICES advice [75] including North Sea cod [68]). [76] criticize the 339 

operational approach for leading to a lack of precaution under decreasing productivity, and thus 340 

implicitly suggest the adoption of a conservationist point-of-view. 341 

 342 

Exploratory modeling 343 

Exploratory Modelling (EM) was conducted by projecting the North Sea cod stock under 344 

multiple combinations of uncertain scenarios and management decisions via the climate-forced 345 

population model. We initialized the stock in 2030 with a SSB equaling the present MSY Btrigger 346 

(and corresponding stock numbers, which follow the distribution over age classes estimated for 347 

2018 [41]). We thereby assume a successful rebuilding of the presently depleted cod stock until 348 

the starting year of the simulation. 40000 projection runs were conducted consisting of 200 349 

random schemes of SR model parameterizations and climate scenarios, (separate sets of runs 350 

for Ricker- and the Beverton & Holt) as well as 100 random management decisions of constant 351 

catches and harvest rates (ranges defined based on initial trial simulations; Supplementary 352 

Methods 5). Evaluation of projection outcomes was based on procedures commonly applied in 353 

EM analysis: 354 

Feature scoring – We first evaluated the importance of the various uncertainty factors and the 355 

management measures for achieving the management objectives using gradient boosting 356 

regression trees [77]. We defined the target regression variable as the number of years in which 357 

both management targets, i.e. SSB ≥ MSY Btrigger and F ≤ FMSY, have been met, and values of 358 
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the SR parameters and climate scenarios as predictors. Separate regression analyses were 359 

performed for each of the Ricker- and the Beverton & Holt SR models.  360 

Scenario discovery – In a second step we identified out of all projection runs the successful 361 

scenarios where both management targets, i.e. SSB ≥ MSY Btrigger and F ≤ FMSY, were met for 362 

the entire projection period. Subsequently, we explored the combinations of constant catch or 363 

harvest rate and uncertain factors that characterize these successful projections. 364 

Risk and trade-off analysis – We eventually assessed the risk that different exploitation levels 365 

(constant catch levels or harvest rates) will not successfully achieve management objectives. 366 

We calculated sustainability risk as the risk of F ≥ FMSY (indicating over-fishing [73]) and SSB 367 

≤ MSY Btrigger (indicating vulnerability to reproductive failure), and additionally profitability 368 

risk, reflecting the risk of profit being less than the average profit over the years 2000 to 2018, 369 

which is a relatively stable level (i.e. c. 50 million € (model hindcast, see Supplementary Figure 370 

3)). Risks were calculated as the percentage of projections not meeting at least one of either 371 

sustainability objective or not meeting the profitability objective by the total amount of 372 

projection data for each management measure. 373 

 374 

Software 375 

All population and economic modelling as well as data analyses were performed in Python [78]. 376 

Sampling of uncertainties and decisions in the population model was conducted using the 377 

Monte-Carlo sampler of the “EMA Workbench” package for EM tasks [79]. Boosting 378 

regression tree analysis was conducted using the “GradientBoostingRegressor” function (with 379 

default settings) of the Scikit-Learn package [80]. Visualizations were performed in R [81] 380 

using the “tidyverse” package [82] and in Python using the “matplotlib” package [83].381 
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Results 382 

Feature scoring Feature scoring using boosted regression trees revealed that although 383 

exploitation pressure is generally the dominating factor for management success in our 384 

simulations of North Sea cod dynamics (except for the combination of the Beverton & Holt 385 

model and constant catch), uncertainty in SR model parameters log(alpha) and gamma is of 386 

similar importance (Fig. 2). Our simulations also showed that the realized climate scenario as 387 

well as the strength of the density-dependence in the stock (the log(beta) parameter in SR 388 

model) are likely of minor importance for management success (the number of years in which 389 

sustainability objectives are achieved) of North Sea cod. Partial effect plots demonstrate that 390 

management success of any of the harvest control rules is dependent on high values of 391 

log(alpha) (describing the positive effect of SSB on recruitment) and low gamma (describing 392 

the magnitude of the negative effect of higher SSTs on recruitment) independent of SR model 393 

type. In harvest-rate-based management strategies two-dimensional threshold dynamics are 394 

clearly visible (Fig. 2a). Thresholds occur between lower and higher management success in 395 

relation to log(alpha) and gamma values, but especially at c. 20% harvest rate to 100% 396 

management failure (i.e. zero sustainable years). These are most pronounced at log(alpha) 397 

levels > c. 10-12 and gamma values < c. 0.75-0.80, where almost a full range of future 398 

sustainable years is achieved at low harvesting intensity. In contrast, a constant-catch harvest 399 

control rule resulted in a more transitional interaction with SR parameter uncertainties (Fig. 400 

2b). Management with harvest rate resulted in a larger safer space of relatively high 401 

management success. However, that space is not defined by management strategies alone but 402 

also by uncertainty in the SR-model parameterization, in both harvest-control rules.  403 

 404 

Scenario discovery Scenario discovery revealed that neither a constant catch nor a harvest rate 405 

was identifiable that met the sustainability targets over the entire simulation period. Minimum 406 

constant catch (0.4 kilo-tonnes) and harvest rates (0.02 %) resulted in 68 and 70 % successful 407 

scenarios, respectively. We found successful scenarios at constant catches < 75 *103 tonnes and 408 

harvest rates < c. 18%, with a frequency depending strongly on log(alpha) and gamma 409 

parameters (Fig. 3), a pattern already shown by feature scoring. The highest numbers of 410 

successful scenarios were discovered at the lowest catch- and harvest rate levels, but decreased 411 

with decreasing log(alpha) and increasing gamma values. However, the effect of varying 412 

log(alpha) and gamma on the occurrence of successful scenarios is stronger in the constant-413 

catch harvest control rule (Fig. 3a,b) compared to the harvest rate strategy (Fig. 3c,d) that 414 
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provided a broader safe range of management measures. Successful scenarios are furthermore 415 

largely independent of climate scenario and functional form of the SR relationship. 416 

 417 

Risk and trade-off analysis Our scenario discovery exercise revealed no completely safe levels 418 

of catch and harvest rate for North Sea cod given the uncertainty in SR model parameterization; 419 

even zero-catch and zero-harvest-rate policies resulted in notable risk (Supplementary Results 420 

2). As a consequence every level of a management measure would bear a degree of risk not 421 

achieving the sustainability objectives. We hence assessed the risk that different levels of 422 

harvest rates and fixed catches would have on achieving management objectives. In addition to 423 

sustainability risk, we developed an economic risk metric, i.e. profitability risk that indicates 424 

the probability that different levels of harvest rates and fixed catches would have to not achieve 425 

average recent historical profits. By these metrics we explored the trade-off between risk of not 426 

achieving sustainability and the risk of the fishery not operating in a profitable way. 427 

We found sustainability risk for North Sea cod to slowly increase to 50% towards a harvest rate 428 

of c. 20% for both mid- and end-of-century periods, the earlier period however starting from a 429 

lower risk level. (Fig. 4a). Afterwards sustainability risk increased faster, approaching 100% at 430 

harvest rates of c. 25%. Applying a constant catch harvest control rule would result in a 431 

relatively linearly increasing sustainability risk for both periods peaking at c. 80% at a catch of 432 

200 kt (Fig. 4b). Profitability risk decreased continuously with increasing harvest rate levelling 433 

off at about 50 % (with a slight downward offset for the first period) at the harvest rate causing 434 

100 % sustainability risk (Fig. 4c). In contrast, profitability risk decreased abruptly with 435 

increasing constant catch from c. 40 kt towards c. 60 kt. From that catch level on profitability 436 

risk increased linearly with increasing catch to the peak level causing maximum sustainability 437 

risk (Fig. 4d); the increase is likely related on an increase in scenarios that lead to eventual stock 438 

collapse and thus to the termination of fishing (Supplementary Results 1). 439 

Our trade-off analysis for harvest rate management strategies revealed an initial rapid decrease 440 

of profitability risk (from 100 to c. 50-55 %) and a less strong increase in sustainability risk 441 

(Fig. 4e) with increasing harvest rates until c. 18 %. With a further increase in harvest rates 442 

sustainability risk increases rapidly while profitability risk remains constant. An initial steep 443 

decrease in profitability risk and an increase in sustainability risk with catches up to c. 63 kt is 444 

also found for constant-catch management strategies (Fig. 4f). However, in contrast to harvest 445 

rate management, both risks increase in parallel with further increasing catches. Overall both 446 

risks are lower for the mid-century compared to the end-of-century period. 447 
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Temporal trends in risk increase matched the increasing trend observed in projected future SST 448 

dynamics in the two RCP scenarios (Fig. 5), especially in the constant-harvest-rate policies: 449 

The period of stronger SST increase starting in the 2060s corresponds to more marked increases 450 

in sustainability risk (median over all policies: c. 30 % in 2060 to c. 45 % in 2100) and 451 

profitability risk (c. 50 % in 2030 to c. 60 % in 2100) than before (Fig. 5 e, f). Risk variability 452 

over time was relatively small compared to risk variability over policies, however. Notably, 453 

even at low fishing levels (catch < 50 kt; harvest rate < 15 %), risk increased strongly from 454 

rather low levels (<< 25 %) after only few (appx. five) years (Fig. 5 a, b). Aggregated risks for 455 

constant-catch policies were overall less variable over time than risks for constant-harvest-rate 456 

policies but also much higher in magnitude (median over all policies never < 75 % after 2035); 457 

lower catch levels appeared to result in a stronger temporal sustainability-risk signal largely 458 

matching that obtained from constant-harvest-rate policies (Fig. 5 a, b; see also Supplementary 459 

Results 2). Furthermore, risk increase was relatively steady under lower catch levels (< 100 kt) 460 

and over most of the range of harvest-rate policies, but regularly peaked under high-catch 461 

policies (> 100 kt) (Fig. 5 a, b), a pattern likely related to density dependence in the SR 462 

relationship (see Supplementary Fig. 4, Supplementary Results 3). 463 

Profitability risk increased over time following a similar trend as the increase in sustainability 464 

risk, especially under the harvest-rate policies associated with lower risk (Fig. 5 a, c, f); very 465 

low levels of risk (<< 25 %) were only achieved under rather high fishing levels (> 50 kt catch, 466 

> 20 % harvest rate) and only for a brief initial period (the first appx. 2-3 years). 467 

 468 

Discussion 469 

We here developed a novel approach to evaluate management strategies for commercially 470 

exploited fish stocks that unlike traditional application followed Robust Decision Making 471 

(RDM) protocols. RDM shifts emphasis from improving model predictions through increasing 472 

model complexity to improving management decisions [25]. RDM hence seeks to increase the 473 

understanding about the consequences of management actions under a large spectrum of 474 

possible scenarios, eventually defining a management strategy that is robust to a multitude of 475 

equally possible futures [36]. Our RDM projection study, applied to North Sea cod, 476 

consequently inverted the notion of poor predictability of stock dynamics limiting climate-477 

informed advice [47] into an explorative, policies-oriented evaluation of the potential to achieve 478 

sustainable management of this depleted fish stock given uncertainties in the recruitment 479 

process and the future course of climate change. 480 
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A major result of our study is that uncertainty about future recruitment under climate change 481 

has a similar impact on management success as the harvest control rule strategies we applied. 482 

Uncertainty in recruitment is a well-known challenge for biomass projections and specification 483 

of harvest levels for exploited fish stocks [84, 8]. Our study goes beyond this general knowledge 484 

and demonstrates that density-independent productivity of the stock and the strength of the 485 

negative effect of increasing SSTs (reflected by the log(alpha) and gamma parameters in a SR 486 

model, respectively) are of predominant importance for management success in our simulations 487 

of North Sea cod. The importance of log(alpha) points towards the long-standing discussion in 488 

fisheries science whether compensatory or depensatory (i.e. the Allee effect) processes 489 

dominate at low stock sizes [85]. If depensation prevails, recovery of overexploited stocks is 490 

inhibited and has been shown to exist especially for cod populations [86, 87, 88, 89] and 491 

recently for North Sea cod [90]. Empirical evidence is however overall stronger for 492 

compensatory effects in fish stocks, i.e. increasing productivity at low stock sizes and hence 493 

high recovery potential [85]. Nevertheless, our results reinforce that critically low stock sizes 494 

should be avoided to not critically endanger fish stocks and to not impede their recovery when 495 

depleted [91, 92, 44, 93].  496 

Our study reinforces that climate change is challenging fisheries management because it 497 

introduces further sources of uncertainty to the decision-making process [94, 95, 96, 97, 98]. 498 

We focused on evaluating the importance of uncertainty in recruitment, because it is likely the 499 

most important process affected by the consequences of climate change in the ocean [99] 500 

especially in North Sea cod [100, 101, 102]. Nevertheless, our model remains a gross 501 

simplification of the many climate-related processes, including in addition to SST also e.g. 502 

plankton abundance [102], that affect not only the recruitment of cod in the North Sea, but also 503 

growth [103] and distribution shifts [104]. Furthermore, finding relationships between 504 

environmental variables and recruitment is difficult because these notoriously have a poor fit 505 

[105]. The importance of uncertainty in the gamma parameter (reflecting the strength of the 506 

negative effect of increasing SSTs) for sustainable management in our simulations 507 

demonstrates the vulnerability of management approaches that consider only low-level 508 

uncertainty in the climate effect on recruitment. Moreover, uncertainty in SR model 509 

parameterization was more important than the type of emission scenario, revealing that 510 

considering the future course of climate change is less decisive than structural uncertainty in 511 

the model. Nevertheless, matching dynamics of risk and SST increase towards the end of the 512 

century indicate that the degree of future warming will still likely have a considerable impact 513 

on North Sea cod productivity. This is also reflected in significantly reduced recruitment and 514 
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SSB at RCP8.5 compared to RCP4.5 in that period (Supplementary Figure 4). In light of the 515 

massive effect of SR uncertainty found in our study, it would be worthwhile to apply our RDM 516 

approach to an extended range of SR functions and environmental and biological covariates in 517 

future studies, especially for potential operational management applications. Further, an 518 

operational RDM application should consider the impact of DU given the present state of the 519 

stock to inform short-term management decisions, in addition to scenario simulations initialized 520 

with the assumption of a rebuilt stock as presented here. 521 

A further major result of our study is that none of the management strategies we applied in our 522 

simulations is fully robust to the uncertainty in model parameterization and future climate 523 

change. Specifically, no constant catch or harvest rate was able to meet sustainability targets 524 

for North Sea cod over the entire simulation period; even at low fishing levels, risk increased 525 

from low levels only few years into the future. However, a harvest-rate strategy provided a safer 526 

operation space with a threshold-like transition to less safe exploitation levels than a constant 527 

catch strategy with its less-distinctly bounded space. For the latter, it was only possible to 528 

determine a policy range less affected by high-risk periods (and therefore likely less affected 529 

by temporal recruitment variability), but no distinct low-risk policy range. These results 530 

confirms the theory that while providing stable catches, a constant catch strategy may lead to 531 

excessive exploitation rates at low stock sizes, while a constant-F strategy is more responsive 532 

to fluctuations in stock size [52, 53]. Our harvest rate strategy corresponds effectively to a 533 

constant F strategy [54]. However, because we were not primarily interested in finding the 534 

better management strategy, but rather exploring the effect of uncertainties on successful 535 

management, we used harvest rate, and considered FMSY, in addition to MSY Btrigger, as one of 536 

our management targets under both harvest control rules. 537 

Using both a target F and a limit biomass reference point, we mimicked the MSY strategy 538 

implemented in EU fisheries management by ICES [106, 107]. We however disregarded the 539 

threshold F rule implemented which is likely the most resilient management approach to 540 

uncertainties and climate change effects [108, 109, 54], but was not useful to implement in our 541 

study, as some unfavourable scenarios might have enforced a permanent down-scaling of F and 542 

thus reduced the validity of results attributed to certain harvesting levels (especially where 543 

sustainability was achieved with the permanently reduced F). Stress-testing the EU MSY 544 

strategy under climate change scenarios would hence be a valuable study. 545 

Our approach employed the official F and biomass reference points [41] that are based on ICES’ 546 

assumption of a hockey-stick SR relationship without environmental covariates [68]. 547 
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Management reference points are regularly updated in the so-called ICES benchmark process 548 

[75], in response to productivity changes in the stock (or changes to productivity perception) 549 

founded in a changed (or differently perceived) SR relationship. We, however, did not adapt 550 

reference points to the various SR relationships utilized in our projections, as we do not assume 551 

that future recruitment will follow any of these relationships to a reliable degree. Rather, 552 

projecting with the large variety of SR relationships here represents an expression of the 553 

inability of predicting recruitment reliably, and the calculation of SR-specific reference points 554 

(and evaluation of projected SSB and F against them) would not be meaningful in this context. 555 

Also, the effectiveness of flexible reference points in general is historically questionable [74] 556 

and in simulations strongly depends on limited uncertainty [96, 110], and can even result in 557 

poorer management outcomes [98; 76]. We hence adopted a conservationist perspective and 558 

consider MSY Btrigger as the lower limit to good stock status, and FMSY as the upper limit to 559 

ecologically acceptable fishing pressure, and evaluated projected SSB and F against them to 560 

assess policy performance under deep uncertainty in predicting recruitment. 561 

Given that our simulations for North Sea cod revealed no management strategy that is fully 562 

robust to uncertainty in model parameterization and future climate change, we conducted a risk 563 

and trade-off analysis, exploring the trade-off between the risk of not achieving sustainability 564 

targets and the risk of the fishery of not operating in a profitable way. Such a risk assessment 565 

can be valuable decision support tool for fisheries managers that usually must consider both 566 

ecological and economic (and hence social) objectives. For North Sea cod our results indicate 567 

that even the best trade-offs of sustainability and profitability would require low catches or 568 

harvest rates compared to historical levels, reflecting the presently low productivity of the stock 569 

as integrated in the deep uncertainty about the SR relationship. Indeed, the rather immediate 570 

over-fishing associated with early attainment of very low profitability risk (which was 571 

associated with high fishing levels and which rapidly and markedly increased) implies that such 572 

low fishing levels are required even in the short-term where the impact of DU is still reduced. 573 

In the mid-to-long term, however, even low fishing levels would not be sufficient to fully 574 

compensate for DU effects and for the impacts of stronger warming on productivity, as reflected 575 

both by considerable sustainability- and profitability risks. Our profitability reference level was 576 

set quite arbitrary to a mean over years 2000 to 2018, and hence further sensitivity studies would 577 

be required for an extended use. Our representation of the economy in our modelling approach 578 

is furthermore quite simplistic since North Sea cod is usually caught in a mixed fishery [41] 579 

that would affect the profitability of the respective fleets [111]. We are nevertheless convinced 580 

that this first approximation of profitability holds for our single-species approach.  581 
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An additional constraint to direct practical implementation, our approach deviates from formal 582 

management strategy evaluation (MSE) in fisheries science by not simulating observation- and 583 

implementation errors, and not simulating future stock assessments and reference-point re-584 

estimations (as outlined in e.g. [23]), as we adopted a more theoretical approach focusing on 585 

the impact of deep uncertainties on long-term policy success. We suggest our approach as a 586 

pre-analysis to classical MSE (i.e., a form of sensitivity analysis concerning recruitment 587 

uncertainties). Extended studies could furthermore aim at an integration into the existing / more 588 

applied MSE model frameworks. 589 

Further complications arise from the population structure of North Sea cod, which is comprised 590 

of three geographically distinct sub-populations with different life-history traits and 591 

productivity levels (summarized by [112]) and which are recognized in management since 592 

recently [113; 114]. We selected the former one-stock formulation [41] in order to maintain a 593 

relatively simple model structure with a correspondingly limited number of uncertainties to 594 

illustrate the RDM approach, but suggest an update to the current stock perception (and future 595 

updates in case of any future changes to stock structure or stock perception) for a potential 596 

operational application. 597 

Finally, dynamic changes unrelated to climate change in the North Sea also have the potential 598 

to affect future productivity of North Sea cod: For example, offshore windfarms in the southern 599 

North Sea provide novel habitat for demersal / rock-associated species, there are indications of 600 

their usage as spawning grounds by cod [115; 116]. With construction of windfarms expected 601 

to increase in the North Sea in the future, population-level impacts on North Sea cod might 602 

hypothetically occur in the future, however research on the subject has not yet progressed to a 603 

point where such an impact could be included in a population model. 604 

In conclusion, we here provided the first study that considered principles of decision-making 605 

under deep uncertainties (DMDU) in a fisheries management framework. Our study contributes 606 

a novel aspect to MSE approaches in fisheries by taking the principle to consider multiple 607 

operating models with multiple assumptions about the impact of climate change [23], [117] to 608 

its extremes, thereby accounting for uncertainty in stock productivity in a more holistic way. 609 

We furthermore show how robust decision-making (RDM) approaches can support a 610 

management system to consider and to cope with deep uncertainties by considering risks and 611 

trade-offs between multiple goals. Arguably, our single-species approach is simplistic 612 

compared to state-of-the-art multispecies or food web modelling approaches [97, 118], but 613 

allowed us to follow the RDM philosophy of shifting emphasis from improving model 614 
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predictions to improving management decisions [25]. We consider our approach as an addition 615 

to the toolbox in ecosystem-based fisheries management approaches that are instrumental in 616 

developing a sustainable exploitation of our world fisheries resources. 617 

 618 

Data Availability 619 

Model input data and code are available on https://github.com/imf-uham/DMDU_North_Sea/. 620 

Model output data are available on https://zenodo.org/records/11110075. 621 
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 974 

Figure 1. Study design according to Robust Decision Making (RDM) protocols. (A) the specification of decision 975 
alternatives, i.e. fisheries management strategies according to harvest rates and fixed catch levels; (B) the model 976 
system consisting of coupled population and economical components; (C) uncertainties affecting the success of 977 
management strategies, i.e. stock-recruitment (SR) model types and parameterization as well as emission 978 
scenarios; (D) management objectives that management strategies will be evaluated against; (E) exploratory 979 
modelling and analysis of model projection outcomes (SSB, fishing mortality [F]), including (1) evaluation of the 980 
relative importance of management measures and uncertainties for achieving objectives (feature scoring), (2) 981 
identification of combinations of management measures and uncertainties that achieve objectives (scenario 982 
discovery) and (3) evaluation of the risk of exploitaiton levels not achieving sustainability and profitability 983 
objectives (risk analysis), and (4) evaluation of trade-offs between exploitation levels as well as sustainability and 984 
profitability objectives (trade-off analysis). 985 
 986 
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 994 

Figure 2. Importance of management measures and uncertainty effects – Results of boosting-regression-tree analysis of projections with Ricker and Beverton-Holt SR-models 995 
under harvest rate (a) and fixed catch scenarios (b); individual effects (upper row) and interactions between management measures and the stock-size-related SR parameter log(α) 996 
(middle row) and the temperature-related SR parameter γ (lower row). Lighter color in interaction plots denotes higher number of sustainable years (i.e. years with SSB ≥ MSY 997 
Btrigger and F ≤ FMSY). RCP = climate scenario (representative concentration pathway)998 
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 999 

Figure 3. Occurrence of successful scenarios in the policy-uncertainty space – The space is defined by harvest 1000 
intensity (catch or harvest rate) and the three SR parameters (log(α), log(β) [axis not shown] and γ [shown as dot 1001 
size]). Successful scenarios are defined as projections  with SSB >= MSY Btrigger and F < FMSY in all projection 1002 
years. Results are shown for Beverton-Holt (a,c) and Ricker (b,d) SR models under total catch (a,b) and harvest 1003 
rate (c,d) scenarios as well as emission scenarios RCP4.5 (blue) and 8.5 (yellow). log(α) and γ (represented by dot 1004 
size) are SR model parameters. 1005 
 1006 

 1007 

 1008 

 1009 

 1010 

 1011 
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 1012 

Figure 4. Relationship between sustainability risk and exploitation for harvest-rate (a) and fixed-catch projections 1013 
(b), as well as relationship between profitability risk and exploitation (c, d), and the relationship between 1014 
sustainability and profitability risks as well as exploitation intensity (inserted x-axis and connecting segments 1015 
indicate exploitation level associated with a specific risk combination) (e, f). Risks were calculated over both 1016 
climate scenarios. Colors represent periods within the projection time series: yellow: 2030-2049 (mid-century), 1017 
blue: 2050-2099 (end-of-century). Thick segments in (e) and (f) represent exploitation rates leading to minimum 1018 
summed risk and a ratio of risks nearest to 1 (see Supplementary Methods 6 for details). For a quantification of 1019 
risks specific to zero-harvesting scenarios, see Supplementary Results 21020 
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1021 
Figure 5. Temporal dynamics of sustainability risk (a, b, e) and profitability risk (c, d, f), and future projected 1022 
SST dynamics (g). Panels (a) to (d) show risk dynamics for the individual management policies; panels (e) and 1023 
(f) show dynamics of median (solid line) and 25- and 75-percentile risk over policies. Colors in (e) and (f) 1024 
represent the exploitation metric: orange: constant catch, purple: constant harvest rate. Black line in (g) 1025 
represents mean annual projected SST in the North Sea over RCP scenarios 4.5 and 8.5; colors represent 1026 
projections for the single scenarios (orange: RCP4.5, purple: RCP8.5) 1027 
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Table 1: Sampling bounds for stock-recruitment parameters. Lower and upper bounds are mean parameter estimate 1031 

± standard deviation, respectively 1032 

SR model Parameter Lower bound Upper bound 

Ricker log(alpha) 8.67 12.02 

 beta 11.90 12.64 

 gamma 0.64 0.95 

Beverton-Holt log(alpha) 9.35 13.23 

 beta -11.96 -10.36 

 gamma 0.69 1.01 
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