/

5

OOPSLA '91 Workshop on Reflection and. Meta-Level Architectures in Object-Oriented Programming.

Event Models or Meta-Level Architectures beyond
“slot-value-using-class”

Ralf Moller

Dept. of Computer Science, University of Hamburg,
Bodenstedtstr. 16, 2000 Hamburg 50, Germany,

Email: moeller@informatik.uni-hamburg.de

1 Introduction

Currently, the meta-level facilities of CLOS are often used to trace certain slot-access oper-
ations in one way or another. We call these access operations events. An event specifies an
activity (of an object system) that causes or triggers a meta-level shift. In CLOS, events
are reified by the application special generic functions (e.g. slot-value-using-class and
friends) which dispatch an appropriate method specialized for the metaclass of the instance
whose slot is to be modified. This class-specific meta-level access can be extended to an
instance-specific mechanism with a few lines of code (see [1] for details). But, are these
meta-level hooks enough?

In this paper we try to show that it could be useful to provide a way to combine simple
events to higher-level compound events. We are interested in defining these compound
events declaratively using so-called event models. Event models are used to “recognize”
concepts not evident in the events reified by basic meta-level hooks. A generalization of
these ideas would be to supply declarative event models for events (or activities) in the
object system itself. In this case a reflective architecture might be supported. However, to
explain the main points we apply meta-level facilities to the domain-level only.

The concepts described in this paper have been developed to support the generation of
visualizations for (existing) object systems. The goal is to change neither the modeling nor
the code of the object system. Application and visualization should be kept separate.

For presentation purposes we choose a simple constraint net application. A visualization
of the net can be found in [1]. The example application has been borrowed from [5], so there
is no need to go into details here. The constraint net uses CLOS classes to model stock
exchange relations. Certainty intervals describing brokers’ (and other participants’) esti-
mations about when a split of stocks is to be expected are propagated through a constraint
net. The participants are modeled as so-called assertions. The assertion class defines
two slots to represent certainty intervals, one for the lower bound and one for the upper
bound. The dependencies between assertions are modeled by several constraint classes.
In this paper we focus on the assertions. During propagation of estimation intervals the
slots lower-bound and upper-bound of assertion objects (e.g. broker1 and broker2) are
modified. For our visualization these modifications are interesting events. A simple event
is the access to one slot of one object.

In the next sections we describe how declarative event models can be used to provide
descriptions of the events we are interested in. After a sketch of the models we develop


Ralf Moeller
OOPSLA '91 Workshop on Reflection and. Meta-Level Architectures in Object-Oriented Programming.


4 ;

Average of o] e broker1
Certainty o o]
Intervals a3 0nm
L) u
.'O .I
0
mO m Droker2
—b{)—o—r}o < >
o 10 15 Timesteps

Figure 1: An example of the behavior of broker1 and broker2.

extensions to the Metaobject Protocol that facilitate the application of event models. Due
to space limitations we do not consider how visualizations are actually generated.

2 Event Models

Declarative event models have been used extensively in high-level vision (see [3]) to interpret
image sequences. In this paper we consider an early approach using relational models. The
original work has been done with traffic scenes in mind. Nevertheless, the models can be
used in more abstract domains, too.

For instance, an event might be signaled when the average of the certainty interval of an
assertion object broker1 is nearly equal to that of broker2 but only if it lesser before and
greater afterwards. In other words: broker1 passes broker?. Figure 1 shows an example.

A visualization might show this (temporarily) by highlighting graphic objects for the
corresponding certainty intervals (e.g. using a red frame). An example of an event model
for this passing event looks as follows.

(pass-event
((pass #70bj1 #70bj2) #*t1 #%t2)
((above #70bj1 #70bj2) #xt1 #+t3)
((nearly-equal #7objl #70bj2) #%xt3 #*t4)
((below #70bj1l #70bj2) #xt4 #%t2))

The rule can be read as a Horn clause: the first term is the rule head, the others
constitute the rule body. The prefixes #7 and #x indicate normal variables and time-
variables, respectively. Time variables are treated in a special way (s.b.). What is the
(intuitive) meaning of the rules? In the rule pass-event an object obj1 “passes” another
object obj2 during the interval [t1, t2] if the following conditions are met: from t1 to
t3 obj1 is “above” obj2, from t3 to t4 the objects are “nearly-equal”, and from t4 to
t2 obj1l is “below” obj2. The order of the time variables is important. The rule defines
implicitly: t1 < t3 < t4 < t2. Above, nearly-equal, and below are primitive relations,
pass is called a derived relation. Derived relations can also be used in other rules as well.
Thus, event models are hierarchical.

The rules can be used with either a forward or a backward chaining inference mechanism
to derive that or to prove whether ((pass brokeri broker2) [5 9] [12 171) holds.!

lObviously, in an object-oriented system, it should be advantageous to create an instance of a certain
event class.



The time variables are unified with maximum time intervals indicating, for instance, that
(pass brokerl broker2) also holds with t1 = 7 and t2 = 15.2

The rule interpreter expects the primitive predicates (above, nearly-equal, and below)
to be entered into a fact database with maximum time intervals. For every primitive relation
there is an evaluation function that generates these facts. According to Figure 1 we have:

((nearly-equal broker2 brokeri) 1 4) ((nearly-equal brokerl broker2) 1 4)
((above brokerl broker2) 5 9) ((below broker2 brokeri) 5 9)

((nearly-equal brokerl broker2) 10 11) ((nearly-equal broker2 brokeri) 10 11)
((above broker2 brokerl) 12 17) ((below brokerl broker2) 12 17)

Time variables require a special treatment during the matching or unification process.
Bindings of time variables are not stored in binding lists (as is usual for unified variables),
but are entered into so-called time nets. These time nets encode the relations between time
variables (s.a.) and allow for a consistency check of the time intervals. If an inconsistency
is found during a certain step of a proof backtracking occurs. We refer to [4] for a complete
discussion and focus now on the definition of time steps.?

The interested reader might have already noticed it. In Figure 1 we combined some slot-
access events to define steps without any word of comment. The next sections discuss how
the Metaobject Protocol can be used and extended to support the definition of compound
events that can be interpreted as steps.

3 The Problem

Using the Metaobject Protocol, it is not difficult to have the change of slot values recorded.
But, a single access (to either the upper-bound or lower-bound slot) does not really con-
stitute an interesting event. At a first glance the event should be signaled when both slots
are changed. Where is the problem?

e We know nothing about the order in which slots are modified.

e The application might decide not to call (setf slot-value) when the new and the
old values are identical. In this case, there will be no possibility to signal an access
event directly.

e Even worse, the slot lower-bound might be changed again before the corresponding
access to its counterpart upper-bound occurs.

The problem is that the notion of a (propagation) step is not modeled in the pro-
gram domain. If we do not want to change the domain modeling we have to define an
interpretation-dependent step notion using meta-level facilities.

4 Some Ideas for a Solution

It should be clear now that we need a more sophisticated meta-level architecture (beyond
slot-value-using-class) to link visualizations to existing applications. The next sections
describe ideas that might shed some light on how to design this architecture.

>The term ((pass broker1 broker2) [5 9] [12 17]) will be transmitted to the visualization generator.
®If the events are not to be recorded an event model allowing incremental recognition might be provided.



4.1 Object Steps

In our constraint example the assertion objects have more slots than only lower-bound
and upper-bound. But only access operations to the latter are relevant and have to be
arranged or “synchronized”. All slot-access events are signaled to a special synchronizer
object which considers only modifications of certain slots declared beforehand (lower-bound
and upper-bound in our case).

Suppose, the slot lower-bound of broker1 had been modified. The synchronizer marked
the slot lower-bound as changed. A so-called object step is generated when this slot is
modified again. Just before the new slot value is entered, we collect the current values of
the two slots and store them into a data structure. After generating the object step all
old changed-markers are reset. The new-value is entered and the slot is marked as changed
again.

It will be useful to provide a generic function that filters and maps the slot values
before combining them with the object into an object step. In our constraint application
the two slot values for lower-bound and upper-bound might be averaged, i.e. the object
step comprises only one value. An object step is signaled by calling a generic function
(e.g. signal-object-step) with the synchronizer and the object step as arguments. The
primitive behavior could be just to print the object step in any format on the standard
output stream. Special synchronizers might provide a more sophisticated administration
(s.b.).

Object steps synchronize slot-access events and combine them into compound events.
The definition can easily be extended to take more than two slots into consideration. The
introduction of object steps avoids the problems discussed above when simple slot-access
events are used directly. Notice that in this definition it is not relevant whether the corre-
sponding other slots have been modified. It should be clear that the definition above is only
one way to define object steps. It is desirable to supply different classes of synchronizer
metaobjects that reflect different interpretations of object steps (e.g. a synchronizer that
queues the values until all slots considered are modified). Different classes may specialize
signal-object-step methods in different ways.

4.2 System Steps

The object steps defined above model intra-object events. But how are object steps of
different objects related? Therefore, we define the conception of a “system step” as well. A
system step combines object steps for a set of objects. Again, the definition is dependent on
a certain interpretation of an object population and might be specialized for other systems.

System steps are compiled in nearly the same way as object steps. Object steps of
different objects, say broker1 and broker2, are signaled to a system synchronizer object
which stores the object steps. A system step is generated when an object step is signaled
for an object the system synchronizer already has an entry for. Let us suppose, this were
the case for broker1. If there is currently no object step entry for broker2, an object step
for broker2 will be generated by the system synchronizer (and signaled to itself) using the
current values for the lower-bound and upper-bound slot. After the current entries are
disposed, a new entry for the incoming object step is set up. We do not forget to say that
this definition of a system step might be extended for any number of objects.

System steps model inter-object events and can be associated with a time stamp. Pro-
viding time stamps allows the detection of much more interesting meta-level events. We are
now in the position to be able to apply the event model described above. The classes and the
generic functions together with their arguments cannot be presented in this contribution,



but the ideas should be clear. The final section discusses the advantages of using declar-
ative event models and of defining object or system steps in different kinds of meta-level
computations.

5 Conclusion

The main advantage of integrating declarative event models into meta-level programming
is that they allow more advanced events to be defined. This is due to the introduction
of system steps that make possible a certain (though limited) “reasoning over time”. Our
architecture tries to provide a mechanism that goes beyond the current procedural facilities.
Event models express higher-level concepts that do not have to be considered beforehand,
e.g. by the programmer of an application.

Though not discussed primarily in this paper, it should be possible to apply the event
models not only to domain-level events but also to events in the object system itself (mod-
ifications of slots of (meta)class objects, computations of class precedence lists, etc.). Fol-
lowing this approach could perhaps extend the current notion of computational reflection,
as defined e.g. by Maes [2], especially, if it is possible to compute event models by the object
system itself. This might demonstrate first steps to a more cognitive notion of reflection.

Acknowledgements

I thank my colleagues R. Cunis, V. Haarslev, G. Retz-Schmidt, and C. Schréder for valuable
comments on an earlier draft of this contribution. However, all shortcomings should be
charged to the author.

References

[1] Haarslev, V., Moller, R., A Framework for Visualizing Object-Oriented Systems, in:
Proceedings ECOOP/OOPSLA’90, European Conference on Object-Oriented Pro-
gramming and Object Oriented Programming Systems, Languages and Applications,
Oct. 21-25., 1990, Ottawa/Canada, pp. 237-244.

[2] Maes, P., Concepts and Ezperiments in Computational Reflection, in: Proceedings
OOPSLA‘87, Object-Oriented Programming Systems, Languages and Applications,
Oct. 4-8., 1987, Orlando/Florida, pp. 147-155.

[3] Neumann, B., Novak, H.J., Event Models for Recognition and Natural Language De-
scription of Events in Real-World Image Sequences, IJCAI-83, pp. 724-726.

[4] Novak, H.J., A Relational Matching Strategy for Temporal Event Recognition, in: Pro-
ceedings GWAI-84, 8th German Workshop on Artificial Intelligence, Wingst/Stade,
October 1984, Laubsch, J. (Ed.), Springer, 1984.

[5] Winston, P.H., Horn, B.K.P., Lisp - 3rd Edition, Addison-Wesley, 1989.



