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Abstract—Deprecation is a way to inform clients using an
application programming interface (API) that the usage of this
API is discouraged. Tool support and research for deprecation
in local APIs are well established. However, nowadays web APIs
are more commonly used, e.g., using the REST architectural
style. However, the techniques to detect and handle the usage of
deprecated local APIs cannot be directly applied to web APIs.
Previous approaches for detecting deprecated web APIs focus on
static analysis of client code by detecting calls to web APIs and,
subsequently, an investigation of associated API specifications.
These approaches currently have two essential limitations: (i) The
target of an API call can often not be determined statically.
(ii) Deprecation in API specifications is not the only way to signal
deprecation for web APIs.

We introduce a dynamic approach using tracing to detect
calls to web APIs. Subsequently, we check the called APIs for
deprecation using an API specification, response meta-data, or a
knowledge base. This approach addresses both limitations of the
detection with static analysis. We implement the approach and
evaluate it on three projects, including client-server calls as well
as a microservice benchmark system. The empirical evaluation
yields a precision of 1.00 and a recall of 0.95. The false negatives
can be attributed to a shortcoming in the automatic instrumen-
tation provided by OpenTelemetry observability framework.

Index Terms—application programming interface, deprecation,
dynamic analysis, tracing

I. INTRODUCTION

Software systems are typically not isolated units but interact
with their surroundings [1]. Such communication with external
systems and their interfaces may be a business requirement,
thus posing an architecturally significant requirement, or a
voluntary decision during the system’s design, thus introducing
the dependency as an architectural constraint for further devel-
opment [2], [3]. In addition to systems external not belonging
to the same organization, a similar setting is encountered
within a system if it comprises highly decoupled modules, e.g.,
with a microservice architecture [4] or bounded contexts [5].

As software systems evolve, they also need to adapt their
interfaces to changed functionality. A common way to inform
clients calling these interfaces that their use is no longer
encouraged is the deprecation of an entire API, an element in
the API, or a particular version of the API. Depending on the
further actions after a deprecation is introduced, it may lead to
technical debt with both API clients [6] and API providers [7].

If clients wish to react to the deprecation of an API they de-
pend on, they first need to be aware of the deprecation. While
comprehensive support exists for detecting the deprecation of
static APIs (e.g., for Java libraries) the situation is different
for web APIs (e.g., for REST calls) [8].

Previous approaches for the detection of calls to deprecated
web APIs have utilized static analysis methods similar to
the case of static APIs [9]. However, this has two essential
limitations: (i) The target of an API call can often not be
determined statically. (ii) Deprecation in API specifications is
not the only way to signal deprecation for web APIs. Thus, we
introduce an approach to determine the usage of deprecated
web APIs dynamically. To the best of our knowledge, it is the
first such approach.

To overcome these limitations, we develop a new approach
comprising two essential steps: (i) The execution of a client
component is observed, and information about calls to web
APIs is recorded. (ii) The recorded data is analyzed and each
endpoint is checked for deprecation. Our approach considers
deprecation that is signaled directly in the call’s response, in
an associated API specification, or in a knowledge base. We
implement the approach for HTTP APIs and OpenAPI speci-
fications. OpenAPI is a de-facto standard for the specification
of REST APIs.

This paper’s main contributions are:
• We present the first approach to identify the usage of

deprecated web APIs dynamically.
• We implement the approach for REST APIs, Open-

Telemetry data, and various forms of deprecation infor-
mation.

• We evaluate the approach on multiple sample systems.
• We include a replication package with code, examples,

and the evaluation data [10].
These contributions benefit practitioners who use or offer

deprecated APIs. Furthermore, the contributions benefit re-
searchers who wish to study the deprecation of web APIs.

Section II introduces fundamentals, motivates our research,
and surveys related work. In Section IV, we introduce our
approach and present its implementation. Subsequently, we
evaluate the approach and its implementation in Section V
and discuss our results and their limitations in Section VI.
Finally, Section VII concludes the paper.
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II. BACKGROUND

In the following, we introduce the fundamentals relevant
for our approach and the problem it tackles. In addition to
scientific publications, we discuss relevant standards, as we
will derive the design principles for our approach from them
in the subsequent section.

A. API Evolution

APIs are interfaces that enable programmers to interact with
other software components or systems by leveraging means
of programming languages. This contrasts the interaction be-
tween systems based on data exchange files, binary interfaces,
and manual interaction.

Although APIs are strongly coupled with the components
or systems they are provided for, APIs themselves are also
software artifacts. As such, they are often not only developed
once but need to be maintained and evolve with changing
requirements and contexts over time. Medjaoui et al. [11]
model the lifecycle of APIs in five phases:

• Create: The API is in development and not available for
clients yet. Deployed versions are considered prototypes,
and locations, names, and behavior may still change
frequently and unexpectedly.

• Publish: The API is deployed and available for at least
one client. The API and its usage are monitored and if
necessary, changes are made.

• Realize: The API is generally available and realizes
business value. Stability is desired to avoid problems with
client code, but changes are made to adapt the API to
changed or new requirements or to fix errors.

• Maintain: The API is actively used, but no new features
are introduced. Only necessary changes are performed,
e.g., to secure a service against newly found security
vulnerabilities.

• Retire: The API’s end-of-life has been decided and
announced. While it is still in operation, its usage is
discouraged.

These API evolution activities introduce changes in new
versions of an API. Depending on the nature of such a
change, clients need to be adapted to the new version. Such
API changes that would otherwise prevent the continued
functioning of the API client are called breaking-changes,
e.g., the removal of an existing method. Changes that do not
force clients to react are called non-breaking changes, e.g., the
addition of a new method. From the Realize stage onward, a
stable API aims to avoid breaking changes.

In the Retire stage, to prepare clients for the upcoming
removal of API elements, its usage may be discouraged by
marking it as deprecated. In addition to upcoming removal,
other reasons may also motivate a deprecation, e.g., another
method provides better results in some cases.

B. API Types

Historically, several distinct types of APIs have emerged.
The most important differentiation divides APIs into local
APIs and remote APIs [12].

Local APIs are interfaces external to the software compo-
nent under consideration, but reside within the same ecosystem
and are governed by the syntactic rules of the programming
language used. Local APIs may be provided by the program-
ming language’s SDK itself (e.g., a library to access operation
system functionality) or through additional resources (e.g., a
web framework). Research on local APIs has developed tool
support for API providers and API clients, and has empirically
investigated API evolution [13].

Local APIs are also called static APIs, programming lan-
guage APIs, or traditional APIs: They are statically re-
solved [14], governed by the syntactic and semantic rules
defined for the programming language used [15] and have been
established prior to remote APIs [16].

In contrast, remote APIs use means of network communi-
cation (e.g., HTTP or WebSocket). They may additionally use
message-oriented middleware (e.g., Apache Kafka), allowing
for asynchronous interactions.

Web APIs are a subtype of remote APIs featuring syn-
chronous request/response communication, e.g., REST, gRPC,
and GraphQL [17]. While they have been originally developed
in the context of the World Wide Web, they are also used
in other contexts, e.g., microservice architectures [18]. For
the purpose of this paper, no distinction between different
technologies of web APIs is necessary and thus, we choose
one of them, REST, for simplified illustration in the remainder.

Typical evolution of remote APIs has been described in
several patterns [12], [19]–[21], e.g.,

• Aggressive Obsolescence: API providers enforce strict
deadlines for the removal of old API versions. This forces
API clients to react to the deprecation. Regarding the API
lifecycle model by Medjaoui et al., this means keeping
the Retire phase as short as possible.

• Experimental Preview: Unstable APIs and API versions
are clearly communicated. In particular, preview versions
(Publish phase) are subject to frequent change. Thus,
deprecation is not necessary for such changes.

• Limited Lifetime Guarantee: API providers announce
an API’s end-of-life date with its introduction. This limits
the Realize and the Maintain phases and allows for API
clients to plan the required changes ahead of time.

• Two in Production: If a change to an API is introduced,
the new version is published, but the old version is kept
available as well. This allows clients to change from an
API version in Maintain or Retire phase to an API in
Realize stage deliberately.

While such patterns improve the management of API evo-
lution, it remains a challenge to reliably inform clients of
remote APIs about changes and prevail on them to adjust their
code [21].



C. Deprecation of Static APIs

In the case of static APIs, deprecation is often an integral
feature of a programming language and is generally well
researched — in particular for the Java programming language
and the Android ecosystem [8]. For Java, there is a compre-
hensive deprecation feature and a strong tool support [22]. In
the Android ecosystem, swift reaction to the deprecation of
an API in the Android SDK is essential, as a strict removal
policy is enforced [23].

Java code is compiled into bytecode which is subsequently
executed on a Java Virtual Machine. During compilation, the
Java code is parsed, dependencies are resolved, and links to
external resources, e.g., libraries, are created. If the compiler
finds a called method marked as @Deprecated, it issues
a warning. Even if a library later introduces a change to an
API, the previously linked version is not affected as it is linked
statically, i.e., stored in a local file.

D. Deprecation of Web APIs

In contrast to deprecation defined in programming language
specifications, there is no standard way for the deprecation of
web APIs. The information that an API is deprecated may be
provided in a non-technical or in a technical way [24]. While
non-technical communication is shared in natural language via
an arbitrary channel (e.g., release notes, blog posts, or mailing
lists), technical communication is presented in a machine-
readable standardized format (e.g., API specification, header
information in messages). An example for non-technical com-
munication is the API Deprecation Status page by eBay [25].

In a closed ecosystem or if, for other reasons, all API clients
are known, the API clients may be informed directly via non-
technical channels. This additionally allows the API provider
to reliably inspect who is still using the API and to support
these clients in their migration to a new API version. However,
a settings in which all customers are known are rare [26], [27].
For many API providers, their customers are unknown [21].
Thus, technical communication is necessary for API providers,
and its reception is important for API clients.

1) Deprecation Information in API Specification: An API
may be defined via an API specification describing the avail-
able operations and their intended usage, paths and names, and
data types.

For REST APIs, the specification via OpenAPI1 has become
a de-facto standard after multiple competing providers of
specification formats joined the OpenAPI Initiative under the
Linux Foundation [21]. In version 3.0 of OpenAPI (released
in 2017), a new field deprecated accepting a boolean value
was added. This field is an optional addition to entire opera-
tions or single parameters of operation requests or responses.
Alternatively, for OpenAPI versions prior to 3.0, deprecation
may be expressed verbally in a description field (non-technical
communication).

The specification for an API is often available through an
API provider’s web pages but often not linked directly from

1https://www.openapis.org/

the API itself, i.e., provided within the communication with
the API. The RFC 8631 standard defines such a header field
(Link field with service-desc relation type) for API
responses providing a link to the respective API specifica-
tion [28].

An alternative is followed by another initiative that aims
to standardize the URL path to API specifications via a
“well-known” resource identifier [29]. The API specifications
for a domain could then be discovered automatically under
/.well-known/api-catalog [30].

2) Deprecation Information in Response Message: In the
communication with an API, the response may contain
(meta-)information in addition to the response itself, e.g., an
HTTP status code. An API provider can communicate the dep-
recation of an API via this technical channel. However, there
does not exist a standardized way for deprecation information
in HTTP headers, but a variety of options:

A general warning header field was designed in 2014 for
status information that cannot be expressed in HTTP status
codes directly [31]. While this header field has been removed
from the specification in 2022 [32], it is still used to signal
deprecation, e.g., by Kubernetes [33].

The sunset header field communicates a date indicating
the expected end-of-life of an API [34]. While this field
is related to deprecation, it does not allow the exact same
functionality as deprecation: Deprecation may not be lim-
ited to a certain date. In particular, an API may be depre-
cated, but not designated for removal at all. An additional
deprecation header field has been in development [35],
but has not been finalized yet. Nevertheless, it is used, e.g., by
Zalando [36]. As a replacement, a more general lifecycle
header field may combine the existing sunset and the
planned deprecation [37].

Finally, non-standardized header fields are allowed in
HTTP responses. Thus, some API providers define cus-
tom header fields, e.g., X-API-Deprecation-Date and
X-API-Deprecation-Info by Zapier [38]. A standard
demanded such custom header fields to begin with X-, but
this limitation has been lifted [39].

3) Knowledge Base Providing Deprecation Information:
While knowledge bases for technical aspects of commercial
and open-source software exist, e.g., Technopedia2, to the best
of the authors’ knowledge, no such knowledge base features
machine-readable deprecation information on an API level,
i.e., featuring individual operations that are deprecated. Such a
knowledge base has been suggested in research literature [21],
[24]. A knowledge base featuring the deprecation status of
APIs can either be public, i.e., a repository representing
general knowledge, or private, i.e., a project-specific collection
of relevant APIs.

Although such a data source does not exist at the moment,
we nevertheless designed our approach in a way that it could
include such a service that checks a submitted URL for
deprecation of the corresponding API.

2https://www.techopedia.com/



E. Observability and Tracing

Observability is the ability to collect telemetry data, i.e.,
data about the runtime behavior of software systems by
collecting and exporting observation data [40]. Such data
often comprise logs (i.e., textual event descriptions with
corresponding timestamps), metrics (i.e., measurements of
runtime properties), and traces (i.e., a series of state snapshots
describing the execution of a single request throughout the
system). Observability engineering is particularly concerned
with distributed systems where tracing needs to follow a
request through multiple services. Each service then generates
partial traces (so-called spans) that need to be collected and
combined into a full trace.

The OpenTelemetry framework3 is an open-source project
featuring specifications and tooling for vendor-agnostic ob-
servability. It accepts telemetry data in various formats and
from various sources, and it exports the collected data to sev-
eral backends. To collect telemetry data, the framework offers
manual and automatic instrumentation of systems in major
languages. For example, the automatic Java instrumentation
inspects and injects bytecode that exports data whenever a
system communicates with an external API. The collected
telemetry data is subsequently passed to the OpenTelemetry
Collector, which combines data from multiple sources, pro-
cesses them (e.g., removes personal API keys from HTTP
headers), and exports them to a backend service or logs them
into a file.

III. RELATED WORK

A. Analysis of Web API Deprecation

In 2022, Bonorden and Riebisch [8] systematically reviewed
research publications on API deprecation. They found that
scientific studies had been performed almost exclusively for
local APIs. They proclaimed the deprecation of remote APIs to
be “uncharted territory” since they could only identify a single
study on the deprecation of REST APIs [24]. This confirms the
results from Raatikainen et al. [14] who demand that research
needs to study web APIs better to match the shift from local
to remote APIs in industry.

Yasmin et al. [24] analyzed publicly available OpenAPI
specifications regarding the use of deprecation fields. They
found that 87% of API versions had not deprecated elements
before they were removed. Furthermore, their data shows that
request parameters have been deprecated more often (46%)
than other elements of OpenAPI specifications. Finally, they
studied the communication associated with deprecation: Some
APIs do not share replacement information at all (33%) or only
for some elements (22%); only 5% of deprecated APIs provide
information about removal time. Only 1% of deprecated APIs
provide the information additionally through response headers.

Di Lauro et al. [41] performed a similar analysis on a
larger and more recent data set mined from GitHub data.
They obtain similar results: APIs are often removed without
deprecation (35%) or deprecated but not removed (64%). Only

3https://opentelemetry.io/

the remaining 2% of observed state changes followed the
deprecate-remove protocol. Furthermore, they found that only
a small set of APIs feature both a deprecation flag as well as
deprecation information in the description field.

Lercher et al. [21] conducted 17 semi-structured interviews
with developers, architects, and managers involved in main-
taining APIs in systems featuring a microservice architecture.
While they were focused on the API provider perspective, they
nevertheless found that “developers do not think about the
evolution of external APIs but expect unlimited availability of
the consumed API version”. They further found that OpenAPI
is the de-facto standard to describe REST APIs, but half of
the participants used additional manual documentation. They
confirmed the use of the Two in Production pattern described
by Zimmermann et al. [12]. Furthermore, all participants
increment (major) API versions when introducing breaking
changes, thus, keeping each individual version stable. Finally,
they identified challenges for API evolution, two of which
are related to deprecation: (1) If consumers rely on API
functionality and do not prioritize updating to a newer version
or are unable to do so, they still depend economically on
the old API version. They conclude that API clients should
be supported in migrating to newer API versions. (2) There
often is no reliable way to inform all customers ahead of time
about breaking changes. They conclude that tool support to
detect usage of deprecated web APIs is necessary, e.g., by
maintaining a list of actively used APIs and corresponding
customers or by tracing actual calls still performed with the
old API version.

B. Static Detection of Deprecation for Web APIs

Yasmin [9] implemented a static analysis approach to detect
usage of deprecated REST APIs in Javascript software. They
detect API requests by searching for common API call patterns
and then working with backward slicing and data flow analysis
to identify the strings passed into such calls. If they found
such a URI string, they checked the deprecation status of the
associated API in its OpenAPI specification. They evaluated
the analysis with 432 client files that call 34 API operations
from 2 API providers (Instagram and Github), yielding a
precision of 100% and a recall of 77% for Instagram APIs
and 94% for GitHub APIs, respectively.

Other studies follow different overall goals but include
a step to identify calls to remote APIs in (Java) program
code: Rapoport [42] searched for URL strings in Java code
to locate calls to remote APIs but found that the statically
identified calls and the additionally dynamically identified
calls overlapped only slightly. Gadient [43] similarly tried to
identify calls from Java code to remote APIs statically, but
their approach yielded low precision (46%) and recall (80%).
A method by Pigazzini et al. [44] focuses on a specific form
of the remote call on the client side (i.e., they assume a
specific form of calls using the Feign or Spring RestTemplate
HTTP client), while the approach by Genfer & Zdun [45]
assumes prior knowledge about the API called (i.e., a list of
the available external endpoints in a microservice architecture).



C. Use of Tracing Information to Study Web APIs

Tracing is a common practice to study web APIs. The main
areas of application include performance analysis and archi-
tecture reconstruction. In performance analysis, traces are used
to study runtime behavior and the fulfillment of related quality
requirements, e.g., appropriate usage of system resources [46],
[47]. Especially in systems featuring microservice architec-
tures, traces are used to re-identify the composition of services
and the communication between them [48], [49].

To the best of the authors’ knowledge, tracing information
has not been used yet to study the status of APIs calls, in
particular, their deprecation status.

D. Assessment of the Current State

In conclusion, the analysis of related work on the detection
of usage of deprecated web APIs reveals that there is only a
static approach at the moment and that this approach has two
essential limitations:

1) Call Target Identification: To statically detect usage of
deprecated web APIs, information about the called endpoint
needs to be extracted from source code alone. The endpoint
can either be found directly (i.e., by searching for strings
that likely resemble URLs) or indirectly (i.e., by identifying
calls and reconstructing the parameters used). However, this
approach is limited to scenarios in which the relevant infor-
mation is actually contained in source code and does not rely
on dynamically loaded external resources, e.g., user inputs, re-
sponses of prior communication, or file imports. Furthermore,
for the indirect identification, the approach depends on the
identification of HTTP calls, which are only a few options in
some programming languages (e.g., Javascript with the built-
in XMLHttpRequest and Fetch libraries), but a lot of
possibilities in other programming languages (e.g., Java with
little internal support for HTTP up to version 10, published in
2018, and, thus, many third-party libraries are in use).

2) Deprecation Information Gathering: In addition to the
API call target itself, its deprecation status also needs to be
identified. A static approach is limited to statically available
data sources. Currently, the deprecation status is checked via
API specifications, and a static approach could possibly be
extended to include a knowledge base. However, the additional
source of deprecation information, headers in call responses,
cannot be accessed in static analysis as it is only produced
upon dynamic requests.

In comparison with the deprecation of local APIs, static
approaches for the deprecation of web APIs also feature
another significant difference: While a local API is statically
linked, a remote API might be deprecated at a later point in
time. Thus, a static analysis at development or integration time
is not sufficient to rule out deprecation for the entire lifetime
of a component calling such an API. A static analysis would
have to be updated continuously.

Fig. 1: Structural overview of the architecture for our approach
to detect usage of deprecated web APIs.

IV. APPROACH

In this section, we present our approach and its sample im-
plementation used for the evaluation. We differentiate between
the approach’s design and its implementation. Intentionally,
the design does not dependent on a specific implementation
technology, but may be applied broadly for various kinds of
protocols and data structures of APIs, their specifications, and
observation data.

A. Design

1) Goals and Design Principles: Analyzing related litera-
ture, we formulate a goal and desired design principles for our
approach. The overall goal is to identify calls from clients
to deprecated web APIs and we formulate the accompanying
design principles:

DP1 The identification should not be targeted to a
single programming language.

DP2 The identification should include calls with targets
that are only known at runtime.

DP3 The identification should include deprecation in-
formation from API specifications, HTTP header
data in responses, and knowledge bases.

DP4 No prior information about an API should be
required for the identification.

2) Overview: Our approach comprises two essentially dis-
tinct parts: An observation to record runtime data about calls
to web APIs and a detection to match the runtime data with
deprecation information about the called APIs. A graphical
overview of this approach is given in Fig. 1.

We point out that the API called is neither part of the
observation nor the detection. Only its response and its as-
sociated specification are used. No additional calls to the API
are generated by our approach.

3) Observation: The observation records runtime data. We
are interested in the following information about calls to web
APIs:

• the call target, i.e., a URL:
https://example.com/api/v2/resource/5



• the HTTP method used, i.e., one of the five pre-defined
HTTP verbs:
GET

• the header fields of the response, i.e., a collection of
possibly many key-value pairs:
Sunset: Tue, 31 Dec 2024 23:59:59 GMT

Link: <https://example.com/api-docs>;
rel="service-desc"

The URL and the HTTP method are mandatory elements
to perform a deprecation analysis. The URL is the essential
information to decide which API element is called and needs
to be checked for deprecation. Additionally, the HTTP method
is further necessary to identify the exact operation as one
element may define a separate operation for any of the HTTP
methods. Finally, the fields in the response header are needed,
if a deprecation is indicated this way and should be checked,
or if the path to the API specification should be obtained
from header information. If the deprecation status should only
be checked via an already known API specification or a
knowledge base, this information does not need to be recorded.

The URL may be given in parts (e.g., the scheme
https://, the host example.com and the path api/
v2/resource/5), or contain additional information (e.g.,
a query ?k=example, or a fragment #part).

Such an observation typically comprises two parts: the client
instrumentation per se, and a collection of the observed data.
This setup allows for the client and its instrumentation to
be deployed elsewhere than the data collection. In particular,
multiple clients can provide information that is collected
in a single place, e.g., multiple services in a microservice
architecture.

Nevertheless, the approach is not limited to this two-part
scenario. A suitable client could write its own data directly
into a file accessible to the detector.

4) Detection: The detection uses the recorded runtime data
from the observation to check the called APIs for deprecation
via multiple sources of deprecation information.

First, deprecation via header information is checked.
For this, a set of pre-defined header fields is checked.
If one of the fields Sunset or Deprecate is present,
the deprecation is certain. If a Lifecycle element is
detected, it needs to be checked if a deprecation-related
status (i.e., deprecation=@2024-12-31T23:59:00Z
or sunset=@2025-12-31T23:59:00Z). The
list could be extended for custom elements, e.g.,
X-API-Deprecation-Info.

Furthermore, the Link field is checked: If a link with
relation type service-desc is found, the linked API
specification is accessed. If it actually is a readable API
specification, it is used for the analysis in subsequent steps.

Second, the matching with external resources, i.e., API
specifications or a knowledge base, is prepared. In this step,
the exact API endpoint that has been called by the client
needs to be determined. If the URL is given in parts, it is
combined into a single URL. If the URL contains additional
information (e.g., a query) it is removed. As the URL contains

both, the server’s base URL (i.e., the scope of a single API
specification) and a path (a concrete API element), it is not
possible to directly extract the distinct parts, but the path is
considered as one element. For example, the URL https:
//example.com/api/v2/resource/5 could be

Base: https://example.com/api/v2
Path: /resource/5

or

Base: https://example.com/api
Path: /v2/resource/5

depending on the positioning and scope of the corresponding
API specification.

Third, the URL is matched and checked against external
resources. For API specifications, the base URL specified in
the specification file is checked against the recorded target
URL. The comparison is a match, if the specified URL is found
at the beginning of the recorded URL – possibly followed by
additional elements. For a knowledge base, either the entire
URL could be supplied or only the host. This depends on
the design of the knowledge base as either it executes the
check with a complete URL, or constitutes a repository of API
specifications for host URLs. If multiple API specifications for
one host are returned, the detection needs to check all of them
for a matching base URL.

Finally, the detection publishes its result. There are a variety
of ways for this step, depending on the intended workflow for
warnings about the usage of deprecated elements. For example,
the information could be logged into a file and analyzed later,
or the information could be used to automatically create an
issue in a project management software.

B. Implementation

For the implementation, we decided to use REST APIs and
OpenAPI specifications as these are among the most used
variations [21]. Furthermore, we use OpenTelemetry as it is an
open standard compatible with various vendor-specific formats
and tools. The implementation is provided in the replication
package [10].

1) Observation/Instrumentation: The observation is per-
formed by the automatic client instrumentation provided by
OpenTelemetry. This part of the OpenTelemetry framework
inspects code or bytecode, searches for known ways to perform
external calls, and injects the necessary information to record
and extract data. We customize the automatic instrumentation
explicitly demanding the recording of the necessary header
fields:

otel.instrumentation.http.client.
capture-response-headers=
"sunset,deprecation,lifecycle,link"

Furthermore, we provide the address for the collector and state
the desired data formats.



Listing 1: Configuration for the OpenTelemetry Collector
exporters:
file:

path: ./output.json
service:
pipelines:

traces:
exporters: [file]

Listing 2: Partial attribute section in a recorded HTTP span
"attributes":[
{
"key":"http.url",
"value":{"stringValue":"https://example

.com/api/v2/resource/5"}
},
{
"key":"http.response.header.sunset",
"value":{"arrayValue":{"values":[{"

stringValue":"Tue, 31 Dec 2024
23:59:59 GMT"}]}}

},
{
"key":"http.method",
"value":{"stringValue":"GET"}
}

]

2) Collection: The recorded runtime data is forwarded to
the collector. For this, we use the OpenTelemetry Collec-
tor. While the OpenTelemetry Collector allows simple pre-
processing of data and export to a variety of monitoring
backends, we are mostly interested in the raw spans or traces
collected. To preserve the independence from other tooling, we
simply export the relevant data to a file using the configuration
shown in Listing 1. The exported file contains HTTP spans for
all recorded calls to APIs. Listing 2 shows an example of the
attribute section in such a span recording.

3) Detection: For the analysis of the header information,
the detection reads the output file exported by the Open-
Telemetry Collector. Subsequently, it checks known API spec-
ifications, i.e., OpenAPI files in a local folder. Additionally,
it may consult a knowledge base via a known address. This
knowledge base is implemented for demonstration purposes
and features a single operation /deprecated accepting a
URL via a POST request and returning a boolean value to
indicate the deprecation of the provided URL. An example
of a deprecation flag in an OpenAPI specification is shown
in Listing 3.

Finally, the detection exports its results. For simplification
in the sample implementation, this is currently a basic JSON
file export. An example for a result is shown in Listing 4.

Listing 3: Excerpt from an OpenAPI specification featuring a
deprecated operation
"/resource/{resourceId}": {

"get": {
"summary": "Get information about

a specific resource",
"description": "...",
"deprecated": true,
"parameters": ... ,
"produces": "application/json"
"responses": ...

}
}

Listing 4: Result for an API that has been deprecated via
response headers and in an API specification
{

"URL": "https://example.com/api/v2/
resource/5",

"httpMethod": "GET",
"apiSpecification": "example-api.json",
"deprecated": true,
"deprecationInformation": [
"Sunset field in response header: Tue

, 31 Dec 2024 23:59:59 GMT",
"Operation deprecated in API

specification: specifications/
example-api.json"

]
}

V. EVALUATION

To evaluate our approach and its implementation empiri-
cally, we apply it to multiple sample systems and ask the
following research questions about precision and recall:

RQ1 How precise is our approach in detecting calls to
deprecated web APIs?

RQ2 How sensitive is our approach in detecting calls
to deprecated web APIs?

A. Method

To answer the research questions, we apply the implementa-
tion of our approach to multiple sample systems and compare
the findings to the results of a manual inspection. A direct
comparison with other approaches would have been desirable,
but unfortunately, it is not possible: To the best of our
knowledge, no other dynamic approach has been reported. The
only other approach to this problem is the static identification
by Yasmin [9]. However, no tool or data for their research is
available.



We have selected the following projects to be used in the
evaluation and included them in the replication package:

1) Petstore: This project is an established example for test-
ing OpenAPI specifications featuring a pet store management
system. A specification file and a corresponding server 4 are
available. The project features multiple API endpoints and
some of these endpoints are available for multiple HTTP meth-
ods. Thus, we can evaluate the exact matching of operations
via path and HTTP method.

We deprecated the GET /pet/{petId} operation in the
OpenAPI specification and stored the modified specification
file locally with our implementation. We then recorded calls
from a client application that performed various calls to the
Petstore API including multiple calls to /pet/{petId}
using various HTTP methods.

We manually inspected which client calls use the deprecated
API and compared our detection results against the manual
results.

2) Lakeside Mutual: This project is a fictitious case study
of an insurance company described in [12] and released as
open-source software5. The system has been designed follow-
ing the Domain-Driven Design method and is implemented
in a microservice architecture. It features nine microservices
written in Java and JavaScript and two administrative services.

We selected one of the microservices, the Customer Core,
and marked all of its APIs as deprecated. To implement this
modification, we added sunset and deprecation HTTP
response headers. Additionally, we added a log statement to
each API for later comparison.

Subsequently, we setup our approach’s implementation and
collected runtime data while performing a manual test se-
quence in the system’s web frontends. Afterwards, we ran the
deprecation detection on the collected data. We compared the
results with a manual inspection and the log data from the
modified microservice.

3) client-server: In addition to these projects, our repli-
cation package features a basic client-server application that
includes the features not covered by the selected applications.
This application comprises a Spring Boot server offering mul-
tiple API paths with different deprecation statuses and different
information channels used to communicate the deprecation:

• deprecation information in response header fields,
one operation for each of: Sunset, Deprecation,
Lifecycle,

• deprecation information in an OpenAPI specification that
is linked in a Link header field in the response,

• no deprecation information in response header fields or
an API specification, but a knowledge base featuring
deprecation information.

The corresponding client application interacts with all of the
server’s endpoints. Again, we manually inspected the client
and compared the results from the automatic analysis against
the manual findings.

4https://petstore3.swagger.io/
5https://github.com/Microservice-API-Patterns/LakesideMutual

TABLE I: Evaluation results

Project Deprecation via Precision Recall

Petstore OpenAPI specification 1.00 0.75
Lakeside Mutual HTTP headers 1.00 1.00
client-server HTTP headers,

OpenAPI specification,
knowledge base

1.00 1.00

Total 1.00 0.95

B. Results

1) Petstore: For the Petstore project, we achieved a pre-
cision of 1.00, but could only observe a recall of 0.75 due
to some false negatives. We investigated the situation in
detail and found that the project uses two different clients
to perform HTTP calls: the HttpClient provided directly by
Java, and the Apache HttpClient 5.2. While the communication
performed with the HttpClient was correctly observed, the
communication using the Apache HttpClient 5.2 was not.

The Apache HttpClient 5.2 features multiple ways to call
HTTP APIs, in particular a “fluent” style. This style is cur-
rently not covered by the automatic instrumentation provided
by OpenTelemetry. Thus, we could not record any spans for
these calls and, subsequently, could not analyze this commu-
nication.

2) Lakeside Mutual: The analysis for the Lakeside Mutual
project provides results that match the manual analysis exactly.
Thus, precision and recall of 1.00 are reached.

3) client-server: Similar to the Lakeside Mutual project, we
also achieved precision and recall of 1.00 for the client-server
project as the results from manual and automatic analysis
match perfectly.

4) Overall results: An overview for the results of each
project is given in Table I. This allows us to answer the
research questions for the empirical evaluation:

RQ1: How precise is our approach in detecting calls to
deprecated web APIs? The implementation for our approach
yields a precision of 1.00 for the example projects. This
signifies that all results reported are actually relevant and
correspond to calls to deprecated web APIs.

RQ2: How sensitive is our approach in detecting calls to
deprecated web APIs? The implementation for our approach
yields a recall of 0.95 for the example projects. The false
negatives can be attributed to a shortcoming in the automatic
instrumentation for Java provided by OpenTelemetry. This
implies that the approach might miss a call to a deprecated
web API if the instrumentation is not performed correctly.

C. Threats to Validity

In the following, we discuss threats to validity of the
evaluation. The limitations of the approach itself will be
discussed in the subsequent section.

Representation bias: The projects used in the empirical
evaluation may not be representative – in particular the evalu-
ation is limited to very few projects. Thus, the generalizability



may be limited which poses a threat to external validity. We
mitigated this threat by the addition of the sample project
to cover all cases that have been described in standards and
scientific literature.

Experimenter bias: We have established the ground truth
for comparison by manual analysis. Thus, the correctness
depends on the experimenters and their understanding and
their flawless execution of the detection task. This poses
a threat to construct validity. We mitigated this threat by
additionally performing static analysis to help the manual
analysis. For this, we searched the source code for strings that
could resemble URLs (e.g., starting with http or https) and
for method invocations of common HTTP libraries (e.g., calls
to execute methods in Java classes that feature an import
okhttp3 statement).

VI. DISCUSSION

The evaluation shows that it is possible to detect calls to
deprecated web APIs dynamically by using tracing. In this
section, we further discuss our approach, the implications of
our findings, and the approach’s limitations.

A. Adherence to Design Principles

We find that our approach fulfills all of the stated design
principles:

DP1: The identification should not be targeted to a
single programming language. While the instrumentation is
specific for each programming language, the approach does
not depend on a specific instrumentation or programming lan-
guage. Even programming languages for which no automatic
instrumentation exists at the moment may export the desired
information manually. Our replication package demonstrates
the instrumentation for Java and Python.

DP2: The identification should include calls with targets
that are only known at runtime. Our approach captures
runtime information for all calls to web APIs and does not
require static information that would have been extracted from
source code. Our replication package contains an example
where a first HTTP call is used to obtain the URL for a
subsequent second HTTP call that is unknown prior to the
execution.

DP3: The identification should include deprecation in-
formation from API specifications, HTTP header data in
responses, and knowledge bases. Our approach uses all three
sources for deprecation information. The implementation and
the sample projects in the replication package demonstrate this
capability.

DP4: No prior information about an API should be
required for the identification. No prior information about
the API that is called by the client application is needed. The
API or its specification do not need to be known apriori.
However, our approach does support the prior collection of
API specifications.

B. Recommendations

We found that it is possible to detect clients using dep-
recated web APIs. However, this detection requires API
providers to systematically use technical information channels
to communicate the deprecation of web APIs.

This two-fold requirement could pose a “chicken or the
egg” problem: API providers might delay the implementa-
tion of these communication channels if clients do not use
the detection possibilities and request information from API
providers. Contrarily, API clients might refrain from checking
the deprecation status of the APIs they call if API providers
do not provide their information.

To overcome this situation, we formulate recommendations
for both, API providers and API clients:

Recommendation for API Providers

• If an API provider decides to deprecate an API,
they should use a technical communication channel
or both, technical and non-technical communica-
tion channels.

• Deprecation should be added in both, response
headers and API specifications.

Recommendation for API Clients

• API clients should review header fields related to
deprecation at runtime.

• API clients should consult API specifications to
find deprecation-related information.

• Both processes may be done manually/periodi-
cally, but executing them automatically/continu-
ously should be preferred.

C. Limitations

In addition to the threats to the validity of the empirical
evaluation discussed in the previous section, the approach itself
is subject to some limitations:

Observability: The approach requires the availability of
HTTP spans or complete traces. These can only be collected
by instrumentation of the client code, thus depending on the
source code’s availability. If an application or part of an
application is only available in binary format or as a container,
it cannot be instrumented. Thus, the approach is a white-box
technique.

Overhead: Tracing introduces additional operations which
adds an overhead to runtime, memory usage, and initialization
duration [50]–[52]. This overhead is negligible if tracing has
already been used and only the deprecation detection is added,
but particularly concerning if tracing needs to be introduced
in the first place.

Instrumentation: If automatic instrumentation of client
code is used, the approach depends on the correctness of



this instrumentation. The evaluation has shown that some call
may be missed if a client is used that is not covered by the
automatic instrumentation. If manual instrumentation is used,
the success of the analysis depends on the correct manual
implementation.

Deprecation information: Another requirement is the avail-
ability of machine-readable deprecation information. If a dep-
recation is only communicated via non-technical channels,
the detection cannot be successful. However, the approach
might be complemented by a transformer from non-technical
to technical information.

Manual maintenance: Since multiple options to deprecate
an API in HTTP response header fields exist, the successful
application of our approach depends on the coverage of such
options. As long as such options are not standardized and
the standard is adopted by all participants, it is necessary to
manually maintain a list of HTTP header fields that need to
be observed in responses from APIs.

Coverage: Since the approach utilizes dynamic data col-
lected at runtime, it can only cover communication with APIs
that is actually performed in an observed session. Thus, similar
to tests, the quality of the overall results heavily depends on
the coverage achieved during the execution. Furthermore, this
dynamic approach should be complemented with other (static)
approaches.

D. Future Work

While we have evaluated our approach positively, we nev-
ertheless observe opportunities for subsequent future investi-
gations:

Applicability: The approach is designed to assist humans,
i.e., developers of API clients. Thus, the actual usefulness
of the approach needs to be evaluated with an experiment
involving human participants.

Presentation of warnings: Currently, our sample implemen-
tation exports the findings into a file. The best way to process
and present such information needs to be examined. This
includes the possible filtering of results to avoid alarm fatigue,
i.e., ignoring warnings due to a high number of simultaneous
alarms [27].

Industrial application: The approach should be evaluated in
a case study or using action research in a real organization. In
particular, the approach should not be implemented on its own,
but as part of a larger context. This would further improve the
external validity of our study.

Hybrid approach: Our approach inherits the general down-
side of dynamic approaches, in particular the limited coverage.
A future study should combine our approach with the static
detection of deprecated APIs to constitute a balanced hybrid
approach.

Dynamic black-box approach: It should be researched if
dynamic data could also be collected if direct client instru-
mentation is not possible, e.g., with the analysis of network
traffic via an HTTPS proxy server.

VII. CONCLUSION

In this paper, we examined the detection of client calls
to deprecated web APIs. Client developers need to be aware
that they are using deprecated APIs to be able to react to
the deprecation, e.g., by updating to a new version. This is
substantially more complex for web APIs than it is for local
APIs.

To design our approach, we studied related work and
relevant standards to aggregate requirements. Subsequently,
we designed a dynamic strategy to record runtime data from
clients and analyze it. The analysis considers three important
sources of information about the deprecation status of an API:
(i) header fields in the HTTP response, (ii) deprecation flags
in an API specification, and (iii) knowledge bases.

We implemented our approach and evaluated it on three
projects. The evaluation achieves a precision of 1.00 and a
recall of 0.95. Thus, we conclude that our approach achieves
good results while simultaneously overcoming the limitations
of static approaches.

Since our dynamic approach introduces new limitations in
comparison to a static approach, it will be important to advance
both strategies and possibly combine them in future work.
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Patterns for API Design: Simplifying Integration with Loosely Coupled
Message Exchanges. Addison-Wesley Professional, 2022.
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“CDA: Characterising Deprecated Android APIs,” Empirical Software
Engineering, vol. 25, pp. 2058–2098, 2020. [Online]. Available:
https://doi.org/10.1007/s10664-019-09764-z

[24] J. Yasmin, Y. Tian, and J. Yang, “A First Look at the Deprecation
of RESTful APIs: An Empirical Study,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020,
pp. 151–161.

[25] eBay, “API Deprecation Status,” https://developer.ebay.com/
develop/apis/api-deprecation-status, 2023, archived snapshot:
https://web.archive.org/web/20230803115701/https://developer.ebay.
com/develop/apis/api-deprecation-status.

[26] J. D. Morgenthaler, “Deprecation,” in Managing Technical Debt
in Software Engineering (Dagstuhl Seminar 16162), 2016, p. 134.
[Online]. Available: https://doi.org/10.4230/DagRep.6.4.110

[27] T. Winters, T. Manshreck, and H. Wright, Software Engineering at
Google. O’Reilly, 2020.

[28] E. Wilde, “Link Relation Types for Web Services,” RFC 8631, 2019.
[Online]. Available: https://www.rfc-editor.org/info/rfc8631

[29] M. Nottingham, “Well-Known Uniform Resource Identifiers (URIs),”
RFC 8615, 2019. [Online]. Available: https://www.rfc-editor.org/info/
rfc8615

[30] K. Smith, “A well-known URI to help discovery of APIs,”
IETF, Internet-Draft, 2023, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-httpapi-api-catalog/00/

[31] R. T. Fielding, M. Nottingham, and J. Reschke, “Hypertext Transfer
Protocol (HTTP/1.1): Caching,” RFC 7234, 2014. [Online]. Available:
https://www.rfc-editor.org/info/rfc7234

[32] ——, “HTTP Caching,” RFC 9111, 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9111

[33] Kubernetes, “Kubernetes Deprecation Policy,” https://kubernetes.
io/docs/reference/using-api/deprecation-policy/, 2023, archived
snapshot: https://web.archive.org/web/20230822152543/https:
//kubernetes.io/docs/reference/using-api/deprecation-policy/.

[34] E. Wilde, “The Sunset HTTP Header Field,” RFC 8594, 2019. [Online].
Available: https://www.rfc-editor.org/info/rfc8594

[35] S. Dalal and E. Wilde, “The Deprecation HTTP Header Field,”
IETF, Internet-Draft, 2021, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-httpapi-deprecation-header/02/

[36] Zalando, “API Guidelines,” https://opensource.zalando.com/
restful-api-guidelines/, 2021, archived snapshot: https://web.
archive.org/web/20231115111747/https://opensource.zalando.com/
restful-api-guidelines/.

[37] E. Wilde, “from ”Deprecation” to ”Lifecycle”: asking for
feedback,” https://mailarchive.ietf.org/arch/msg/httpapi/cI8Ejxs8ES
vJvxOQvtU0jE1 eY/#, message to the IETF [httpapi] mailing list.

[38] Zapier, “API Lifecycle, Versioning, and Deprecation,”
https://zapier.com/engineering/api-geriatrics/, 2017, archived
snapshot: https://web.archive.org/web/20230318233502/https:
//zapier.com/engineering/api-geriatrics/.

[39] P. Saint-Andre, D. Crocker, and M. Nottingham, “Deprecating the ”X-”
Prefix and Similar Constructs in Application Protocols,” RFC 6648,
2012. [Online]. Available: https://www.rfc-editor.org/info/rfc6648

[40] C. Majors, L. Fong-Jones, and G. Miranda, Observability Engineering.
O’Reilly, 2022.

[41] F. Di Lauro, S. Serbout, and C. Pautasso, “To Deprecate or to
Simply Drop Operations? An Empirical Study on the Evolution
of a Large OpenAPI Collection,” in 16th European Conference on
Software Architecture (ECSA), 2022, pp. 38–46. [Online]. Available:
https://doi.org/10.1007/978-3-031-16697-6 3

[42] M. Rapoport, P. Suter, E. Wittern, O. Lhotak, and J. Dolby, “Who
you gonna call? analyzing web requests in android applications,”
in IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), 2017, pp. 80–90. [Online]. Available: https:
//doi.org/10.1109/MSR.2017.11

[43] P. Gadient, M. Ghafari, M.-A. Tarnutzer, and O. Nierstrasz,
“Web apis in android through the lens of security,” in IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2020, pp. 13–22. [Online]. Available:
https://doi.org/10.1109/SANER48275.2020.9054850

[44] I. Pigazzini, F. A. Fontana, V. Lenarduzzi, and D. Taibi, “Towards
Microservice Smells Detection,” in 3rd International Conference on
Technical Debt (TechDebt), 2020, p. 92–97. [Online]. Available:
https://doi.org/10.1145/3387906.3388625

[45] P. Genfer and U. Zdun, “Identifying Domain-Based Cyclic Dependencies
in Microservice APIs Using Source Code Detectors,” in 15th European
Conference on Software Architecture (ECSA), 2021, pp. 207–222.
[Online]. Available: https://doi.org/10.1007/978-3-030-86044-8 15

[46] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,” in
3rd ACM/SPEC International Conference on Performance Engineering
(ICPE), 2012, p. 247–248. [Online]. Available: https://doi.org/10.1145/
2188286.2188326
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