
Numerical Algorithms
https://doi.org/10.1007/s11075-023-01548-3

ORIG INAL PAPER

A low-rank update for relaxed Schur complement
preconditioners in fluid flow problems

Rebekka S. Beddig1 · Jörn Behrens2 · Sabine Le Borne1

Received: 18 January 2023 / Accepted: 26 March 2023
© The Author(s) 2023

Abstract
The simulation of fluid dynamic problems often involves solving large-scale saddle-
point systems. Their numerical solution with iterative solvers requires efficient
preconditioners. Low-rank updates can adapt standard preconditioners to accelerate
their convergence.We consider amultiplicative low-rank correction for pressure Schur
complement preconditioners that is based on a (randomized) low-rank approximation
of the error between the identity and the preconditioned Schur complement.We further
introduce a relaxation parameter that scales the initial preconditioner. This parameter
can improve the initial preconditioner aswell as the update scheme.Weprovide an error
analysis for the described update method. Numerical results for the linearized Navier–
Stokes equations in a model for atmospheric dynamics on two different geometries
illustrate the action of the update scheme. We numerically analyze various parameters
of the low-rank update with respect to their influence on convergence and computa-
tional time.

Keywords Preconditioner · Saddle-point system · Low-rank update ·
Schur complement

Mathematics Subject Classification (2010) 65F08 · 65F10 · 65N22 · 65F55

1 Introduction

Large-scale linear saddle-point systems arise in computational fluid dynamics.A stable
discretization of the incompressible time-dependent linearized Navier–Stokes equa-

B Sabine Le Borne
leborne@tuhh.de

1 Hamburg University of Technology, Institute of Mathematics, Hamburg, Germany

2 Department of Mathematics, University of Hamburg, Hamburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-023-01548-3&domain=pdf

Numerical Algorithms

tions leads to systems of the form

(
A BT

B 0

)(
u
p

)
=

(
f
0

)
(1)

where A ∈ R
nu×nu , B ∈ R

n p×nu , u, f ∈ R
nu , p ∈ R

n p . The matrix block A is
dominated by the velocity mass matrix and includes diffusion and advection, both
scaled by the time step length. The matrix blocks B, BT correspond to the divergence
and gradient operator, resp.. We solve for the fluid velocity u and the pressure p.
The right-hand side f describes the external forcing. The obtained high-dimensional
systems are solved with iterative solvers which require efficient preconditioners.

An overview of the numerical solution of saddle-point problems arising in fluid
flow applications and suitable preconditioners are given in [1] or [2]. A typical choice
for preconditioners of 2×2-block systems as given in (1) is based on (approximations
of) their block LU factorizations. Such block preconditioners typically require approx-
imations to the inverse of the upper left block A of the system matrix in (1) as well as
the (negative) pressure Schur complement S:=BA−1BT. Well-known precondition-
ing techniques for the Schur complement are SIMPLE-type preconditioners [3, 4], the
least-squares commutator (LSC) [2, 5], the pressure-convection-diffusion commuta-
tor [6], grad-div preconditioners [7–9], augmented Lagrangian preconditioners [4,
10, 11] as well as hierarchical matrix preconditioners [12]. An alternative approach
that is not based on the block LU factorization is given by the so-called nullspace
method [13].

Any given reconditioner can be modified by low-rank corrections to hopefully
improve its performance in an iterative solver. Typical objectives are to modify certain
spectral properties of the preconditioned matrix. Large eigenvalues but also small
eigenvalues (close to the origin) may decelerate the convergence of iterative methods.
Deflation strategies aim to shift small eigenvalues to zero to make them “invisible”
to the iterative solver. Spectral preconditioners aim at shifting small eigenvalues by
one. Tuning strategies aim to shift large eigenvalues to one. An overview of popular
low-rank techniques is given in the survey [14]. In [15], a low-rank update is applied
to the velocity-related block A of the system matrix but not to the Schur complement.
In [16–18], low-rank techniques are applied to precondition the Schur complement
that arises in domain decomposition methods.

The construction of low-rank corrections may pertain to matrices that are not given
in explicit form but only defined by their action on a vector. In [15, 16], Arnoldi
iterations are used to compute the low-rank approximations. Another approach are
methods from randomized numerical linear algebra. In [17], the Nyström method is
used which is suitable for symmetric positive definite matrices. In [19, 20], a random-
ized low-rank approximation is obtained by approximating the range of a matrix by
sampling with a few random vectors.

The motivation for this work is to analyze whether a certain type of multiplicative
low-rank update that has been recently introduced in [16] in the context of domain
decomposition methods can also be used to improve existing Schur complement pre-
conditioners in block preconditioners for the saddle-point system in (1). The update
in [16] is based on a low-rank approximation of the error between the identity matrix

123

Numerical Algorithms

and the preconditioned pressure Schur complement. Our conclusion will be that the
impact of such a low-rank update on the convergence of the iterative method differs
not only for different model problems but also for different parameters that are relevant
for the construction of the low-rank updates.

In particular, we will consider two different initial Schur complement precondi-
tioners, two different schemes to compute low-rank approximations, and two different
model problems all of which we will briefly outline in the following.

The (negative) Schur complement S = BA−1BT is not available explicitly since
A−1 is typically only available in the form of (approximate) matrix–vector multipli-
cations and an explicit S would result in a dense matrix. We consider two different
preconditioning approaches as initial preconditioners: (i) the SIMPLE preconditioner
[3] which uses an approximation of the Schur complement that replaces A−1 by a
diagonal matrix, and (ii) the least-squares commutator (LSC) preconditioner [5] which
provides an approximation to the Schur complement inverse based on approximate
algebraic commuting (i.e., without first computing the explicit Schur complement).

In order to compute low-rank corrections for these initial Schur complement precon-
ditioners,weuse the following twomethods: (i)Arnoldi iteration, and (ii) a randomized
power range finder [19].

Our two model problems both stem from amodel for buoyancy-driven atmospheric
dynamics anddiffer in the computational domainswhich consist of a three-dimensional
cube as well as a shell.

A further novel component of our work is the introduction of a relaxation parameter
that scales the initial preconditioner before the computation of the update. It turns out
that such a relaxation parameter can have a substantial impact on the convergence of
the iterative solver.

We will provide an error analysis that connects the error of the low-rank update to
the error between the identity matrix and the preconditioned Schur complement where
the multiplicative low-rank update has been incorporated into the preconditioner.

In our numerical tests, we investigate the influence of the choice of initial precon-
ditioner, relaxation parameter, low-rank update scheme and the update rank on the
convergence behavior and computational times of the iterative solver.

The remainder of this paper is organized as follows: We start in Section2 with an
introduction of the initial preconditioners and the low-rank approximation methods.
In Section3, we review the update scheme introduced in [16] and derive left and right
update formulas for a given initial preconditioner. This is followed by an analysis of the
influence of the update on the error between the identity and the preconditioned Schur
complement in Section4. Numerical results illustrate the update method in Section5.
We conclude in Section6 and give an outlook on future research.

2 Initial preconditioners and low-rank approximation

We start with a common block preconditioner and two well-known Schur complement
preconditioners that we will use as initial preconditioners. Then, we will discuss two
algorithms for the computation of a low-rank approximation that will be needed for
the update derived in Section3.

123

Numerical Algorithms

2.1 Initial preconditioners

Block preconditioners for saddle-point systems of the form in (1) can be obtained
through block factorizations of the system matrix. We will use the block triangular
preconditioner that is based on the block LU factorization

(
A BT

B 0

)
=

(
Inu 0

BA−1 In p

) (
A BT

0 −S

)

where S:=BA−1BT is the negative pressure Schur complement. The block triangular
preconditioner is given by

PBTP,ideal =
(
A BT

0 −S

)−1

=
(
A−1 A−1BTS−1

0 −S−1

)
.

It is considered an ideal preconditioner since it can be shown that GMRES precondi-
tioned with the block triangular preconditioner converges within at most two iterations
[21, 22]. Since the inverses A−1, S−1 are not available we replace them by precondi-
tioners Â−1, Ŝ−1 which leads to the block triangular preconditioner

PBTP =
(
Â−1 Â−1BT Ŝ−1

0 −Ŝ−1

)
. (2)

The velocity block preconditioner Â−1 is often implemented by a multigrid method
[23]. However, due to the advection in our system, algebraic multigrid methods may
fail. Furthermore, the update technique presented in this paper leads to an algorithm

that requires the transposed application of the preconditioners, i.e.,
(
Â−1

)T
v and(

Ŝ−1
)T

v, which is not available for multigrid techniques for unsymmetric systems.

Hence, we choose an incomplete factorization ilu(0) as Â.
For the Schur complement, we use two well-known preconditioning techniques,

the LSC method [5] and a SIMPLE-type method [3]. They are given by

S−1
LSC =

(
BD−1

u BT
)−1

BD−1
u AD−1

u BT
(
BD−1

u BT
)−1

,

S−1
SIMPLE =

(
B diag(A)−1BT

)−1

where Du is a diagonal approximation of the velocity mass matrix. We use the diag-
onal of the velocity mass matrix as an approximation. We replace the Poisson-type
problems by approximations MBDuBT ≈ BD−1

u BT and MBABT ≈ B diag(A)−1BT

123

Numerical Algorithms

which are obtained through incomplete Cholesky factorizations ic(0). The resulting
preconditioners are given by

Ŝ−1
LSC = M−1

BDuBT BD
−1
u AD−1

u BTM−1
BDuBT , (3)

Ŝ−1
SIMPLE = M−1

BABT . (4)

Our choice of (the components of) the initial preconditioners has been guided by the
desire to use rather straightforward (standard) algorithms. In our section on numerical
results, we include tests for some alternative choices such as multigrid methods for
Â−1 and using inner iterations for Ŝ−1. These tests have led us to believe that our
choices for initial preconditioners are reasonable.

2.2 Low-rank approximation

For the update method, we will need a low-rank approximation of a matrix that is only
defined by its action on a vector. We consider two methods, a randomized algorithm
that is based on approximating the range of a given matrix M ∈ R

n×n and the Arnoldi
iteration.

We start with a description of the randomized algorithm. The goal is to compute a
matrix Q ∈ R

n×�, � � n, with as few as possible orthonormal columns that satisfies

M ≈ QQTM

and hence yields a low-rank approximation of M in the form

M ≈ QNT (5)

with N :=MTQ. We compute Q with the randomized power range finder from [19]
which captures the dominant action of the given matrix M by sampling with a few
random test vectors which form the columns of a test matrix G ∈ R

n×l . To improve
accuracy and numerical robustness we apply q power iterations

Y = (MMT)qMG = QR

and obtain Q by computing the QR factorization of Y . The quality of Q can be
improvedbyorthonormalizing the result after eachmultiplicationwith the givenmatrix
M or its transpose. The needed steps for the randomized low-rank approximation are
summarized in Algorithm 1. It can be beneficial to use more test vectors than the
desired rank r for the low-rank approximation. We call the number of oversampling
vectors the oversampling parameter k ≥ 0. We create the l = r + k sample vectors
with normally distributed, independent entries withmean zero and variance one. These
sample vectors form the columns of the sample matrix G ∈ R

n×l .
According to [19], a small oversampling parameter of k = 5 or k = 10 is usually

sufficient for Gaussian test matrices, i.e., choosing k > r usually does not improve the

123

Numerical Algorithms

approximation further. As stated in [20], a small number of power iterations (q ≤ 3)
usually leads to satisfying accuracy.

Algorithm 1 Randomized low-rank approximation with the power range finder
from [19].
Input: Input matrix M ∈ R

n×n , rank r , subspace dimension l ≥ r , number of power iterations q.
Output: Low-rank approximation QNT ≈ M with Q ∈ R

n×r such that QTQ = Ir , N ∈ R
r×n .

// Approximate the range of M.

1 Draw a random matrix G ∈ R
n×l ;

2 Compute Y0 = MG and compute its QR factorization Y0 = Q0R0;
3 for j = 1, . . . , q do
4 Form Ỹ j = MTQ j−1 and compute its QR factorization Ỹ j = Q̃ j R̃ j ;
5 Form Y j = MQ̃ j and compute its QR factorization Y j = Q j R j ;
6 end

// Compute the low-rank approximation of M.
7 Set Q = Qq [:, 1 : r];
8 Compute N = MTQ;

Next, we describe the computation of a low-rank approximation of a matrix M
with the Arnoldi iteration. In each iteration, the matrix M is applied to a vector and
the result is orthogonalized against the vectors obtained in previous iterations. After
r such steps, we find a low-rank approximation of the given matrix M of the form

M ≈ Vr HrV
T
r

where Vr ∈ R
n×r has orthonormal columns and Hr ∈ R

r×r is an upper Hessenberg
matrix. We use the Arnoldi iteration with modified Gram-Schmidt from [24]. We
reorthogonalize the vectors if needed in the Gram-Schmidt procedure. Algorithm 2
summarizes the low-rank approximation with the Arnoldi method.

Algorithm 2 Low-rank approximation with the Arnoldi method.
Input: Input matrix M ∈ R

n×n , rank r .
Output: Low-rank approximation V HVT ≈ M with V ∈ R

n×r such that VTV = Ir , V ∈ R
n×r

and H ∈ R
r×r .

1 Draw a random initial vector v1 of size n with norm 1.
2 for j = 1, . . . , r do
3 Compute y j = Mv j ..
4 for i = 1, . . . , j do
5 Compute Hi, j = yTj vi .

6 Compute y j = y j − Hi, j vi .
7 end
8 Compute Hj+1, j = |y j |2.
9 Compute v j+1 = y j /Hj+1, j .

10 end
11 Set V = [v1, v2, . . . , vr].

123

Numerical Algorithms

Webriefly discuss the differences between the randomized low-rank approximation
and the Arnoldi method. In both methods, the computational costs are dominated by
the repeated application of the given matrix to a vector. The randomized low-rank
approximation requires (q+1)l applications and (q+1)l transposed applications. The
Arnoldi method requires l applications and no transposed applications. So, the Arnoldi
method is cheaper concerning setup times but requires the sequential application of
the given matrix to l vectors. In the randomized low-rank approximation, we could
apply the given matrix to l vectors in parallel.

3 Error-based update with relaxed initial preconditioner

In this section, we derive a left and a right preconditioner update following the ideas
from [16]. We modify the updates by scaling the initial Schur complement precondi-
tioner. Our goal is to adapt the given initial preconditioner Ŝ−1 with a low-rank update
such that the new preconditioner is a more accurate approximation to the inverse Schur
complement S−1. To find a suitable update, we start from the error between the inverse
Schur complement S−1 and the initial preconditioner Ŝ−1

R̂ = S−1 − Ŝ−1. (6)

We derive left and right update schemes by multiplying (6) by S from the left and the
right, respectively,

EL :=In p − Ŝ−1S, ER :=In p − SŜ−1.

Solving for S and inverting, we obtain

S−1 = (
In p − EL

)−1
Ŝ−1, S−1 = Ŝ−1 (

In p − ER
)−1

. (7)

These alternative formulas for the inverse Schur complement S−1 are not practical
since the matrices EL , ER are not available and solving an additional system of size
n p × n p is problematic concerning computational complexity. We hence note that we
are able to apply the error matrices EL , ER to vectors which allows us to compute low-
rank approximations EL ≈ UL,r V T

L,r , ER ≈ UR,r V T
R,r , withUL,r , VL,r ,UR,r , VR,r ∈

R
n p×r , r � n p, and obtain

S−1
L =

(
In p −UL,r V

T
L,r

)−1
Ŝ−1, S−1

R = Ŝ−1
(
In p −UR,r V

T
R,r

)−1
.

By applying the Sherman-Morrison-Woodbury formula, we find

S−1
L =

(
In p +UL,r

(
Ir − V T

L,rUL,r

)−1
V T
L,r

)
Ŝ−1,

S−1
R = Ŝ−1

(
In p +UR,r

(
Ir − V T

R,rUR,r

)−1
V T
R,r

)
.

123

Numerical Algorithms

These approximations S−1
L , S−1

R to the inverse Schur complement S−1 only require
the additional solution of an r × r -system, r � n p, instead of the solution of an n p ×
n p-system. For symmetric saddle-point systems with symmetric Schur complement
preconditioner Ŝ−1, the matrix EL is the transpose of the matrix ER , i.e., computing a
low-rank approximation of EL also yields a low-rank approximation of ER and vice
versa.

To improve the spectral properties of the preconditioner, we introduce a relaxation
parameter α that scales the initial preconditioner in the error matrices

EL,α = In p − α Ŝ−1S, ER,α = In p − αSŜ−1. (8)

We find the relaxed updates by scaling Ŝ−1 with α and replacing EL , ER with EL,α ,
ER,α , respectively, in (7). Replacing EL,α , ER,α with a low-rank approximation
EL,α ≈ UL,α,r V T

L,α,r , ER,α ≈ UR,α,r V T
R,α,r , with UL,α,r , VL,α,r ,UR,α,r , VR,α,r ∈

R
n p×r and applying the Sherman-Morrison-Woodbury formula leads to the update

formulas

S−1
L,α,r = α

(
In p +UL,α,r

(
Ir − V T

L,α,rUL,α,r

)−1
V T
L,α,r

)
Ŝ−1,

S−1
R,α,r = α Ŝ−1

(
In p +UR,α,r

(
Ir − V T

R,α,rUR,α,r

)−1
V T
R,α,r

)
.

We compute the low-rank approximations of EL,α, ER,α with one of the two low-rank
factorization algorithms described in Section2.2. Both matrices depend on the Schur
complement S = BA−1BT which we cannot evaluate exactly due to the large-scale
inverse A−1. We approximate S by replacing the inverse A−1 with the preconditioner
Â−1 which in our case is givenbyilu(0).Note thatwe also need to be able to evaluate
Â−Tv for the low-rank approximation by the power range finder of Section2.2. This
gives us the approximate error matrices

ẼL,α = I − α Ŝ−1 S̃, ẼR,α = I − α S̃ Ŝ−1. (9)

We approximate ẼL,α ≈ QL,r ,αNT
L,r ,α , ẼR,α ≈ QR,r ,αNT

R,r ,α , with QL,r ,α, NL,rα ,

QR,r ,α, NR,rα ∈ R
n×r withAlgorithm1 orAlgorithm2 and obtain the preconditioners

Ŝ−1
L,α,r = α

(
In p + QL,α,r

(
Ir − NT

L,α,r QL,α,r

)−1
NT
L,α,r

)
Ŝ−1, (10)

Ŝ−1
R,α,r = α Ŝ−1

(
In p + QR,α,r

(
Ir − NT

R,α,r QR,α,r

)−1
NT
R,α,r

)
. (11)

Applying these updated preconditioners to a vector requires multiplication with thin
rectangular matrices, solving a r×r system, and scaling a vector of size n p in addition
to the application of the initial preconditioner Ŝ−1. Numerical tests, as illustrated in
Section5.4, show that the relaxation parameter can have a significant impact on the
convergence obtained with the updated preconditioner.

123

Numerical Algorithms

3.1 Construction and application of the update

We discuss the practical construction and application of the update scheme along
with the respective computational complexities. In the following, we only consider
the right update since the respective derivations for the left update are analogous. To
construct the update, we compute the low-rank approximation ẼR,α ≈ QR,α,r NT

R,α,r
with Algorithm 1 or 2. Furthermore, we (explicitly) precompute the small matrix
Hr :=Ir −NT

R,α,r QR,α,r ∈ R
r×r and its exact LU factorization Hr = LrUr . Algorithm

3 summarizes these steps for the setup of the preconditioner update.

Algorithm 3 Construction of the update.

Input: System matrix A =
(
A BT
B 0

)
, preconditioner Â−1, initial Schur complement

preconditioner Ŝ−1, rank r , relaxation parameter α, number of power iterations q,
oversampling parameter k.

Output: Matrices QR,α,r , NR,α,r , Lr , Ur defining the updated preconditioner Ŝ−1
R,α,r (11).

1 Define the approximate Schur complement S̃ := B Â−1BT.

2 Compute a low-rank approximation of Eα := I − α S̃ Ŝ−1 ≈ Qαr N
T
R,α,r with Algorithm 1 (or 2).

3 Compute Hr = Ir − NT
R,α,r QR,α,r .

4 Compute an LU factorization of Hr = LrUr .

5 Define the preconditioner Ŝ−1
R,α,r = α Ŝ−1

(
In p + QR,α,r (LrUr)

−1 NT
R,α,r

)
.

We now discuss the setup costs for the update scheme. The randomized low-rank
approximation with Algorithm 1 requires creating the n p × l random test matrix, i.e.,
generating n pl random numbers. This costs NfillG = O(n pl). The most expensive part
are the (q + 1)l matrix–vector products with ẼR,α and its transpose. The application
of ẼR,α requires the application of S̃ and Ŝ−1 to a vector and a vector addition. Hence,
one application of ẼR,α or its transpose to a vector costs

NmultẼα = Nmult̃S + Nmult̂S−1 + O(n p).

Furthermore, we orthogonalize 2(q + 1) times with modified Gram-Schmidt with
reorthogonalization if needed. The setup costs Nsetup hence add up to

Nsetup = NfillG + 2(q + 1)lNmultẼα + 2(q + 1)North + NLU

= O(n pl) + 2(q + 1)l
(
Nmult̃S + Nmult̂S−1 + O(n p)

)
+ 2(q + 1)O(4n pl

2) + O(r3).

The required steps for the application of the preconditioner Ŝ−1
R,α,r are summarized in

Algorithm 4.
To apply the update to a vector we only need matrix–vector products with np × r -

and r × n p-matrices, solve two triangular systems of size r × r , and add and scale a

123

Numerical Algorithms

Algorithm 4 Application of the updated preconditioner.
Input: Vector v ∈ R

n p , matrices QR,α,r , relaxation parameter α, NR,α,r , Lr , Ur defining the

updated preconditioner Ŝ−1
R,α,r (11).

Output: Vector y = Ŝ−1
R,α,r v ∈ R

n p .

1 Compute zr = NT
α,r v.

2 Solve LrUrwr = zr .
3 Compute x = QR,α,rwr .
4 Compute x += v.

5 Apply the initial preconditioner y = Ŝ−1x .
6 Scale with the relaxation parameter y ∗= α.

vector of size n p. This sums up to the application costs

Napply = NmultQ + NmultN + NsolveLU + Nvecadd + Nvecscale + Nmult̂S−1

= O(n pr) + O(n pr) + O(r2) + O(n p) + O(n p) + Nmult̂S−1

= O(n pr) + Nmult̂S−1 .

If r ≤ n p (typically we have r � n p), the additional cost introduced by the application
of the update is linear in the number of pressure degrees of freedom n p.

4 Error analysis

In this section, we analyze how the right update with relaxation acts on the error
between the identity and the preconditioned Schur complement. With the Sherman-
Morrison-Woodbury formula and the precomputed LU factorization of Hr = Ir −
NT
R,α,r QR,α,r = LrUr , we have

(
In p − QR,α,r ,r N

T
R,α,r ,r

)−1 = In p + QR,α,r (LrUr)
−1 NT

R,α,r =: I + X (12)

for the multiplicative update that is used in (11) with X :=QR,α,r (LrUr)
−1 NT

R,α,r .
We rearrange (12) and obtain

In p = In p − QR,α,r N
T
R,α,r +

(
In p − QR,α,r N

T
R,α,r

)
X ,

⇔ QR,α,r N
T
R,α,r =

(
In p − QR,α,r N

T
R,α,r

)
X . (13)

123

Numerical Algorithms

Now, we analyze the error between the identity and the preconditioned Schur com-
plement after applying the update. We obtain

ER,α,r ,upd := In p − SŜ−1
R,α,r = In p − αSŜ−1

(
In p + QR,α,r (LrUr)

−1 NT
R,α,r

)
(8)= ER,α − (

In p − ER,α

)
X

= ER,α − (In p − QR,α,r N
T
R,α,r + QR,α,r N

T
R,α,r − ER,α)X

(13)= ER,α − QR,α,r N
T
R,α,r +

(
ER,α − QR,α,r N

T
R,α,r

)
X . (14)

The term
Rα = ER,α − QR,α,r N

T
R,α,r (15)

describes the quality of the low-rank approximation QR,α,r NT
R,α,r of ER,α which

not only depends on the chosen rank r but also on the quality of the approximation
S̃ = B Â−1BT to the Schur complement S = BA−1BT used in its construction. We
substitute Rα into (14) and obtain

ER,α,r ,upd = Rα + RαX = Rα(In p + X),

‖ER,α,r ,upd‖ = ‖Rα(In p + X)‖ ≤ ‖Rα‖‖In p + X‖.

Hence, the error after applying the update does not only depend on the low-rank
approximation error Rα but also on the product RαX . In terms of the ranks of the
involved matrices and assuming best low-rank approximations, this implies

rank(Rα) = rank(ER,α) − r

but only

rank(ER,α,r ,upd) ≤ rank(Rα) + r = rank(ER,α),

i.e., the low-rank update typically does not reduce the rank of the error between the
identity matrix and the (updated) preconditioned Schur complement.

5 Numerical results

In this section, we present numerical results obtained for a model problem describing
buoyancy-driven atmospheric dynamics involving the incompressible Navier–Stokes
equations. We start with a description of this model problem in Section5.1. Then,
we analyze the efficiency of the update and the influence of update parameters on
convergence and computational times. In Section5.2, we compare different initial
preconditioners to justify our particular choice. Then, in Section5.3, we discuss the
influence of the parameters in the randomized low-rank approximation, i.e., the number
of power iterations and the oversampling parameter. Furthermore, in Section5.4, we

123

Numerical Algorithms

investigate the quality of the low-rankupdate in dependence of the relaxation parameter
and the update rank.

5.1 Model problem

This subsection introduces the considered test model that describes atmospheric
dynamics. It is based on the Navier–Stokes equations that describe the dynamics
by the pressure p and the velocity u

∂tu + (u · ∇) u − ∇ ·
[
2

Re
ε(u)

]
+ ∇ p = f(u),

∇ · u = 0

on a domain� ⊂ R
d . Here, ε(u) = 1

2 (∇u+ (∇u)T) denotes the strain rate tensor and
∂t the partial time derivative. The non-dimensional number Re denotes the Reynolds
number. It is given as Re = ρUL

μ
where U is the velocity scale, L is the length scale,

ρ is the density of the fluid, and μ is the dynamic viscosity of the fluid. The forcing
f(u) includes the buoyancy and the Coriolis force. We consider two three-dimensional
domains, a cube and a thin shell. Figure1 shows example meshes for both geometries.
We choose periodic boundary conditions at the sides of the cube that mimic the shell
geometry of the atmosphere. Furthermore, we have no-slip conditions at the lower
boundary ∂�lower and no-flux conditions at the upper boundary ∂�upper

u|∂�lower = 0,

n · ∇u|∂�upper = 0.

For the shell geometry, we use no-slip conditions at the inner boundary ∂�inner and
no-flux conditions at the outer boundary ∂�outer

u|∂�inner = 0,

n · ∇u|∂�outer = 0.

The Navier–Stokes equations are temporally discretized with the semi-implicit Euler
method. All terms are discretized implicitly except for the forcing. For spatial dis-
cretization, we use Taylor-Hood elements of the lowest order on hexahedral cells.
Linearization with the Picard iteration leads to (a sequence of) saddle-point systems
of the form

(
A BT

B 0

)(
u
p

)
=

(
f
0

)

for each Picard iteration and each time step. The matrix blocks B and BT correspond
to the divergence and the gradient. The matrix block A is dominated by the velocity
mass matrix. Furthermore, it includes diffusion and advection, both scaled with the
time step length. The advection is scaled with the inverse Reynolds number. We set

123

Numerical Algorithms

Fig. 1 Example grids

the length scale to 1.0m, the velocity scale to 0.01m s−1, the density to 1.20 kgm−3,
and the dynamic viscosity to 1.82 ·10−5 kgm−1 s−1. This leads to a Reynolds number
of about 708.8. We test our preconditioners for the system that we obtain during the
first time step after five Picard iterations.

We solve the block system with FGMRes with a restart length of 40 iterations. We
stop when the relative residual drops below 10−8. In the following, we show results
for the right update scheme since we are using a right preconditioner.

The model and solvers are implemented in C++ using deal.II 9.4.0 [25, 26]
and Trilinos 13.1 [27]. The numerical results are obtained on an Intel Xeon
Gold 6240 processor with 2.60 GHz and 18 cores and 32 GB RAM.

5.2 Initial preconditioners

We start with a comparison of different preconditioners Â−1 and Ŝ−1 for the block
triangular preconditioner in (2) without any low-rank updates. A standard choice as a
preconditioner Â−1 is givenbymultigridmethods.However, due to the advection inour
system, algebraic multigrid methods may fail. Furthermore, we require the transposed
application of the preconditioner for the setup of the update scheme which is not
defined for multigrid techniques for unsymmetric systems. Hence, we have chosen
an incomplete factorization (ilu(0)) from Ifpack, included in Trilinos. We
compare this choice with an algebraic multigrid from the ML package in Trilinos
where we use one V-cycle with a Gauss-Seidel smoother and a direct solver on the
coarsest level.

Both SIMPLE and LSC Schur complement preconditioners in (3) and (4) require
the (approximate) solution of Poisson-type systems BD−1BT with a diagonal matrix
D. We compare an inner iterative solver, the conjugate gradient method with a relative
(stopping) tolerance of 0.1, with an incomplete Cholesky factorization (ic(0)). The

123

Numerical Algorithms

inner solver approach once more is not suitable for the computation of low-rank
updates since the multiplication with the transpose is not available. For the incomplete
Cholesky factorization, we have to compute the matrix-matrix product MBDuBT ≈
BD−1

u BT for the LSC preconditioner (3) and MBABT ≈ B diag(A)−1BT for the
SIMPLE preconditioner (4). The respective timings are shown in Table 1 under the
column headings “setup matmat”.

We test the initial preconditioners with relaxation parameters α from (9) that have
been deemed as favorable by our analysis in Section5.4.

Table 1 shows timings for the setup and the solver using the initial preconditioners
that have been described above. We observe that the setup times for the algebraic
multigrid method are significantly higher than the setup times for the incomplete LU
factorization, and the resulting solvers fail to converge for the cube domain. Setup costs
for the shell are lower than those on the cube in view of the smaller problem size. The
costs for setting up the initial Schur complement preconditioner (columns “matmat”
and “IC”) are significantly lower than the setup costs for the preconditioner of the
leading block A. While using an inner CG method for solving the Poisson-like prob-
lems in the Schur complement preconditioner reduces the outer number of FGMRes
iterations, it increases the solution time since each step becomes more costly. Given
these (admittedly very brief) comparisons to some other preconditioner components,
we conclude that our initial preconditioner setup appears to be reasonable.

5.3 Parameters for the low-rank approximation

In this subsection, we discuss the influence of the parameters in the randomized
low-rank approximation on the update, the number of power iterations q and the
oversampling parameter k. We expect a higher accuracy of the low-rank approxima-
tion and thus a “better” preconditioner by increasing these parameters. The cheapest
setup costs are obtained if we do not use power iterations or oversampling, i.e., we
set q = k = 0 in Algorithm 1. However, this choice leads to less accurate low-rank
approximations and may hence deteriorate the update. Usually, a few oversampling
vectors improve the accuracy of randomized low-rank approximations. Here, however,
we orthogonalize the basis vectors of the approximate range, i.e., the columns of Q
in (5), with the modified Gram-Schmidt method without pivoting. This means that
the obtained vectors are not sorted and oversampling does not improve the low-rank
approximation. Hence we set the oversampling parameter to zero for all the following
tests.

Table 2 shows results obtained for varying the number of power iterations from
q = 0 to q = 3 for an update with rank r = 20 (and no oversampling, i.e., k = 0).
We show the median and the standard deviation obtained from 200 test runs. We set
the relaxation parameter α in (11) to the optimal values in the set {0.6, 0.7, . . . , 2.9}
obtained for an update rank of r = 20, see the next subsection for more details.
Furthermore, we also include results obtained for a low-rank update using the Arnoldi
method as well as results obtained with relaxation but without any update.

We observe that the number q of power iterations has a significant impact on the
setup time. For the shell geometry, q = 1 power iterations for both the SIMPLE and the

123

Numerical Algorithms

Ta
bl
e
1

Se
tu
p
an
d
so
lv
er

tim
es

(i
n
se
co
nd
s)
as

w
el
la
s
ite
ra
tio

n
co
un
ts
fo
r
di
ff
er
en
ti
ni
tia
lp

re
co
nd
iti
on
er
s
Â

−1
,
Ŝ−

1
L
SC

(3
),
Ŝ−

1
SI
M
PL

E
(4
)
fo
r
th
e
bl
oc
k
pr
ec
on

di
tio

ne
r
(2
)
fo
r

th
e
sh
el
ls
ys
te
m

(n
u

=
78

43
8,
n
p

=
34

74
)
an
d
th
e
cu
be

sy
st
em

(n
u

=
10

78
11

,n
p

=
49

13
)

IL
U
,I
C

A
M
G
,I
C

IL
U
,C

G
α

se
tu
p
(s
ec
)

ite
rs

so
lv
e

se
tu
p
(s
ec
)

ite
rs

so
lv
e

se
tu
p
(s
ec
)

ite
rs

so
lv
e

IL
U
(A

)
m
at
m
at

IC
(s
ec
)

A
M
G
(A

)
m
at
m
at

IC
(s
ec
)

IL
U
(A

)
(s
ec
)

Sh
el
l

L
SC

1.
0

7.
0

0.
27

0.
07

31
3.
96

30
.7

0.
27

0.
07

76
21
.6
0

7.
0

18
86
.2
0

Sh
el
l

SI
M
PL

E
1.
6

7.
0

0.
27

0.
09

22
1.
99

30
.7

0.
27

0.
09

38
9.
58

7.
0

18
33
.8
3

C
ub

e
L
SC

1.
2

10
.1

0.
37

0.
10

77
13

.7
2

31
.7

0.
37

0.
10

–
–

10
.1

29
13

.4
6

C
ub

e
SI
M
PL

E
1.
9

10
.1

0.
37

0.
12

47
5.
99

31
.7

0.
37

0.
12

–
–

10
.1

36
8.
68

123

Numerical Algorithms

Ta
bl
e
2

R
es
ul
ts
fo
r
va
ry
in
g
th
e
nu

m
be
r
of

po
w
er

ite
ra
tio

ns
q
w
ith

ra
nk

r
=

20
,o
ve
rs
am

pl
in
g
pa
ra
m
et
er

k
=

0,
fo
r
th
e
sy
st
em

s
on

th
e
sh
el
l(
n u

=
78

43
8,

n
p

=
34

74
)
an
d

th
e
cu
be

(n
u

=
10

78
11

,n
p

=
49

13
)

(a
)
Sh

el
l,
L
SC

,α
=

1.
0.

(b
)
C
ub

e,
L
SC

,α
=

1.
2.

0
27

(0
.5
4)

2.
72

(0
.0
2)

3.
75

(0
.0
9)

0
78

(0
.5
2)

3.
81

(0
.0
2)

15
.3
6
(0
.2
7)

1
19

(0
.5
0)

5.
37

(0
.0
2)

2.
67

(0
.0
8)

1
64

(3
.9
7)

7.
52

(0
.0
8)

12
.5
0
(0
.7
7)

2
19

(0
.5
1)

8.
01

(0
.0
2)

2.
65

(0
.0
8)

2
44

(6
.9
9)

11
.2
3
(0
.0
7)

8.
83

(1
.3
1)

3
18

(0
.4
7)

10
.6
6
(0
.0
2)

2.
56

(0
.0
8)

3
41

(2
.9
9)

14
.9
4
(0
.0
3)

8.
20

(0
.5
7)

A
rn
ol
di

26
1.
73

3.
37

A
rn
ol
di

73
2.
42

13
.0
0

no
up

da
te

32
0

4.
08

no
up

da
te

77
0

13
.7
0

(c
)
Sh

el
l,
SI
M
PL

E
,α

=
1.
6.

(d
)
C
ub

e,
SI
M
PL

E
,α

=
1.
9.

0
21

(0
.3
2)

1.
39

(0
.0
1)

2.
02

(0
.0
5)

0
66

(4
.8
9)

1.
94

(0
.0
4)

8.
29

(0
.6
2)

1
17

(0
.5
0)

2.
72

(0
.0
2)

1.
64

(0
.0
5)

1
78

(1
.4
3)

3.
79

(0
.0
6)

9.
76

(0
.2
8)

2
16

(0
.2
7)

4.
06

(0
.0
2)

1.
54

(0
.0
4)

2
73

(1
.4
7)

5.
72

(0
.1
0)

9.
13

(0
.2
3)

3
16

(0
.4
3)

5.
40

(0
.0
2)

1.
54

(0
.0
5)

3
67

(2
.3
9)

5.
72

(0
.1
4)

8.
35

(0
.3
3)

A
rn
ol
di

20
0.
93

1.
77

A
rn
ol
di

59
1.
29

7.
27

no
up

da
te

22
0

1.
94

no
up

da
te

48
0

5.
97

T
he

ne
ed
ed

ite
ra
tio

ns
an
d
co
m
pu

ta
tio

na
l
tim

es
in

se
co
nd

s
ar
e
gi
ve
n
as

th
e
m
ed
ia
n
(s
ta
nd

ar
d
de
vi
at
io
n)

ob
ta
in
ed

fr
om

20
0
te
st
ru
ns
.
t s
et
up

in
cl
ud

es
on

ly
th
e
co
st
s
fo
r
th
e

up
da
te
,n

ot
th
os
e
fo
r
th
e
in
iti
al
pr
ec
on

di
tio

ne
r

123

Numerical Algorithms

LSC preconditioner seem to be sufficient concerning the reduction of iteration counts,
a further increase of q has hardly any impact on the iteration counts. The observations
for the cube geometry are very different: the number of iterationswith the updated LSC
preconditioner is significantly reduced for each of the first two power iterationwhereas
the updated SIMPLE preconditioner even becomes worse by applying updates. Here,
for q = 0 to q = 3, increasing the number of power iterations does not decrease the
iteration counts. A larger number of power iterations might be needed in this case
but leads to even higher setup times. It is also interesting to note that the standard
deviations of the iteration counts are larger for the cube geometry.

In an attempt to explain the somewhat disappointing results for updated precon-
ditioners on the cube, we take a look at the singular values of the error matrix.
Figure2 compares the decay in approximate singular values for the shell and the cube.
Figure 2a shows the slow decay of the 100 largest approximate singular values of ẼR,α

with α = 1.9 from (9) for the cube using the SIMPLE preconditioner. It is seen that
the singular values decay rather slowly for the cube which makes it difficult to resolve
the dominant subspace of the range. Figure 2b shows that the singular values of the
shell system decay faster compared those of the cube.

5.4 Rank and relaxation parameter

Now, we test the update scheme for varying the rank r and the relaxation parameter α

in (11). Figure3 shows the number of iterations obtained with the updated LSC and
SIMPLE preconditioners on the shell and the cube. We illustrate results for low-rank
updates obtained both with the randomized method and the Arnoldi iteration. The
rank r is varied from 0 to 60 with step size 5 and relaxation parameters α are varied
from 0.6 to 2.9 with step size 0.1. The white color refers to the number of iterations
obtained with a preconditioner without relaxation and update. Green areas denote a
reduction of iteration counts and red areas denote an increase in iterations.

We observe that the relaxation parameter has a significant impact on the needed
number of iterations. The interval of “optimal” α seems to depend mainly on the

Fig. 2 The 100 largest singular values of ẼR,α from (9) for the two domains using the SIMPLE
preconditioner

123

Numerical Algorithms

Fig. 3 Iteration counts for the Oseen systems on the cube (nu = 107811, n p = 4913) and the thin shell
(nu = 78438, n p = 3474) for varying the parameters α, r in (11). For each subfigure, the left image
shows results obtained with the randomized low-rank approximation (with q = 3 power iterations and
oversampling parameter k = 0) and the right image shows results obtained with the Arnoldi iteration. The
white color refers to results obtained without relaxation and updating

initial preconditioner but not on the system (at least for the considered test systems).
Furthermore, the range of (nearly) optimal relaxation parameters is relatively large.
For the LSC preconditioner, the optimal relaxation parameter is close to 1.0. For the
SIMPLE preconditioner, the optimal relaxation parameter lies in the interval [1.6, 1.8]
for the shell and in the interval [1.6, 2.3] for the cube for ranks r ≥ 45. In these settings,
the low-rank update computed with the randomized method leads to lower iteration
counts compared to theArnoldi method. However, the setup costs with the randomized
method using q = 3 power iterations are about six times higher than the setup costs
of the update with the Arnoldi method.

Table 3 shows the needed number of iterations, setup, solver and total costs for
different relaxation parameters and ranks for updates computed with the randomized
method and the Arnoldi iteration. The hyphen denotes that the solver did not converge
within 1000 iterations.Here,we do not use power iterations for the randomizedmethod
(i.e., q = 0). We observe that the relaxation parameter accelerates convergence. For
the coarse shell, the low-rank update decreases iterations counts further but increases
the total computational time. For the other systems, the update does not improve the
preconditioners further. The results obtained with the Arnoldi iteration lead to lower
iteration counts in most cases and about 35% lower setup costs.

6 Outlook

We have derived a right and a left low-rank update for a relaxed Schur comple-
ment preconditioner. The update vectors are computed with a (randomized) low-rank

123

Numerical Algorithms

Table 3 Number of needed FGMRes iterations and setup, solver and total times (seconds) for the Oseen
systems obtained with q = 0 power iterations and k = 0 oversampling vectors

Randomized method Arnoldi
α r iters setup solve total iters setup solve total

shell (kn = 5e−4, nu = 78438, n p = 3474)

LSC 1.0 0 32 0 4.08 4.08 32 0 4.08 4.08

1.0 20 27 2.66 3.45 6.11 26 1.73 3.37 5.10

1.0 40 22 5.30 2.82 8.12 23 3.39 2.95 6.34

SIMPLE 1.0 0 26 0 2.27 2.27 26 0 2.27 2.27

1.6 0 22 0 1.94 1.94 22 0 1.94 1.94

1.6 20 21 1.34 1.84 3.18 20 0.93 1.77 2.70

1.6 40 19 2.68 1.67 4.35 18 1.81 1.60 3.41

shell (kn = 2.5e−4, nu = 608454, n p = 26146)

LSC 1.0 0 – – – – – – – –

1.0 20 – – – – – – – –

1.0 40 – – – – – – – –

SIMPLE 1.0 0 76 0 54.84 54.85 76 0 54.84 54.85

1.6 0 54 0 39.20 39.20 54 0 39.20 39.20

1.6 20 75 11.40 54.75 66.14 62 7.38 46.86 54.24

1.6 40 64 22.75 46.81 69.57 38 14.78 28.40 43.18

cube (kn = 5e−3, nu = 107811, n p = 4913)

LSC 1.0 0 78 0 13.90 13.90 78 0 13.90 13.90

1.2 0 77 0 13.70 13.70 77 0 13.70 13.70

1.2 20 78 3.71 13.85 17.57 73 2.42 13.00 15.42

1.2 40 78 7.45 13.86 21.31 71 4.72 12.66 17.38

SIMPLE 1.0 0 68 0 8.64 8.64 68 0 8.64 8.64

1.9 0 48 0 5.97 5.97 48 0 5.97 5.97

1.9 20 67 1.89 8.27 10.61 59 1.29 7.27 8.56

1.9 40 57 3.80 7.07 10.87 62 2.51 7.62 10.13

cube (kn = 2.5e−3, nu = 823875, n p = 35937)

LSC 1.2 0 – – – – – – – –

1.2 20 – – – – – – – –

1.2 40 – – – – – – – –

SIMPLE 1.0 0 78 0 76.93 76.93 78 0 76.93 76.93

1.9 0 70 0 68.97 68.97 70 0 68.97 68.97

1.9 20 71 15.52 71.33 86.85 63 10.08 63.97 74.05

1.9 40 71 31.11 71.33 102.44 61 20.23 61.70 81.93

The “setup” columns include only the costs for the update, not those for the initial preconditioner. The
parameter kn denotes the time step length

123

Numerical Algorithms

approximation of the difference between the identity and the scaled preconditioned
approximate Schur complement.

Relaxing the initial preconditioner has a significant impact on the convergence
behavior of the iterative solver. The range of (nearly) optimal relaxation parameters
seems to depend mainly on the initial preconditioner and is relatively broad.

We have observed that the update can decrease iteration counts but this is not
guaranteed. The efficiency of the update depends on parameters for the underlying
low-rank approximation, the relaxation parameter, and the update rank. Choosing
the parameters for the low-rank approximation and the update rank is a trade-off
between balancing setup costs and solver times. Low-rank updates computed with the
randomized method using a few power iterations can decrease the iteration counts
and solver times significantly but lead to higher setup costs and also higher total costs
than low-rank updates computed with the Arnoldi iteration or the randomized method
without power iterations. The drawback of high setup costs may be somewhat reduced
when using parallel computing.

Future research concerns the adaptation of the initial preconditioners for the Picard
iteration and for different time steps. The setup time needed to compute the low-rank
update is lower than the setup time required for the initial preconditioners, so it may
be beneficial to use a low-rank update instead of setting up a new preconditioner from
scratch.

Acknowledgements The authors acknowledge the support by the Deutsche Forschungsgemeinschaft
(DFG) within the Research Training Group GRK 2583 “Modeling, Simulation and Optimization of Fluid
Dynamic Applications”. Furthermore, we are grateful for the input from Konrad Simon who provided the
test cases.

Author Contributions All authors wrote and reviewed the main manuscript. Rebekka Beddig performed
the numerical tests.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was supported by
the Deutsche Forschungsgemeinschaft (DFG) within the Research Training Group GRK 2583 “Modeling,
Simulation and Optimization of Fluid Dynamic Applications”.

Data Availability Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.

Declarations

Competing interests The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Numerical Algorithms

References

1. Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137
(2005)

2. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: with Applications in
Incompressible Fluid Dynamics. Oxford University Press (2014). https://doi.org/10.1093/acprof:oso/
9780199678792.001.0001

3. Vuik, C., Saghir, A.: The Krylov accelerated SIMPLE(R) method for incompressible
flow. Rep. Dep. Appl. Math. Phys. 02-01 (2002). http://resolver.tudelft.nl/uuid:c42d9354-75f2-
4fe2-9f25-8f816bd3132a

4. He, X., Vuik, C.: Comparison of some preconditioners for the incompressible Navier-Stokes equa-
tions. Numer. Math. Theory Methods Appl. 9(2), 239–261 (2016). https://doi.org/10.4208/nmtma.
2016.m1422

5. Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block preconditioners based on
approximate commutators. SIAM J. Sci. Comput. 27, 1651–1668 (2006)

6. Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady-state Navier-Stokes equations. SIAM
J. Sci. Comput. 24, 237–256 (2002). https://doi.org/10.1137/S106482759935808X

7. Börm, S., Le Borne, S.:H-LU factorization in preconditioners for augmented Lagrangian and grad-div
stabilized saddle point systems. Internat. J. Numer. Methods Fluids 68, 83–98 (2010)

8. Le Borne, S., Rebholz, L.: Preconditioning sparse grad-div/augmented Lagrangian stabilized saddle
point systems. Comput. Vis. Sci. 16, 259–269 (2015)

9. Fiordilino, J.A., Layton, W., Rong, Y.: An efficient and modular grad-div stabilization. Comput. Meth-
ods Appl. Mech. Engrg 335, 327–346 (2018). https://doi.org/10.1016/j.cma.2018.02.023

10. Cousins, B.R., Borne, S.L., Linke, A., Rebholz, L.G., Wang, Z.: Efficient linear solvers for incom-
pressible flow simulations using Scott-Vogelius finite elements. Numer. Methods Partial Differ. Equat.
29, 1217–1237 (2013)

11. He, X., Vuik, C.: Efficient and robust Schur complement approximations in the augmented Lagrangian
preconditioner for the incompressible laminar flows. J. Comput. Phys. 408, 109286 (2020)

12. Le Borne, S.: Hierarchical matrix preconditioners for the Oseen equations. Comput. Vis. Sci. 11,
147–157 (2008)

13. Borne, S.L.: Preconditioned nullspace method for the two-dimensional Oseen problem. SIAM J. Sci.
Comput. 31, 2494–2509 (2009)

14. Bergamaschi, L.: A survey of low-rank updates of preconditioners for sequences of symmetric linear
systems. Algorithms 13(4) (2020). https://doi.org/10.3390/a13040100

15. Zanetti, F., Bergamaschi, L.: Scalable block preconditioners for linearized Navier–Stokes equations at
high Reynolds number. Algorithms 13(8) (2020). https://doi.org/10.3390/a13080199

16. Zheng, Q., Xi, Y., Saad, Y.: A power Schur complement low-rank correction preconditioner for gen-
eral sparse linear systems. SIAM J. Matrix Anal. Appl. 659–682 (2021). https://doi.org/10.1137/
20M1316445

17. Al Daas, H., Rees, T., Scott, J.: Two-level Nyström-Schur preconditioner for sparse symmetric pos-
itive definite matrices. SIAM J. Sci. Comput. 43(6), 3837–3861 (2021). https://doi.org/10.1137/
21M139548X

18. Zheng, Q.: Domain decomposition based preconditioner combined local low-rank approximation with
global corrections. Comput. Math. Appl. 114, 41–46 (2022). https://doi.org/10.1016/j.camwa.2022.
03.006

19. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Review 53(2), 217–288 (2011). https://
doi.org/10.1137/090771806

20. Martinsson, P.-G., Tropp, J.: Randomized numerical linear algebra: Foundations and algorithms. Acta
Numer. 29 (2020). https://doi.org/10.1017/S0962492920000021

21. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems.
SIAM J. Sci. Comput. 21(6), 1969–1972 (2000). https://doi.org/10.1137/S1064827599355153

22. Ipsen, I.C.F.: A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput. 23(3), 1050–
1051 (2001). https://doi.org/10.1137/S1064827500377435

23. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Elsevier Academic Press, London (2001)
24. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied

Mathematics, (2003). https://doi.org/10.1137/1.9780898718003

123

https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
http://resolver.tudelft.nl/uuid:c42d9354-75f2-4fe2-9f25-8f816bd3132a
http://resolver.tudelft.nl/uuid:c42d9354-75f2-4fe2-9f25-8f816bd3132a
https://doi.org/10.4208/nmtma.2016.m1422
https://doi.org/10.4208/nmtma.2016.m1422
https://doi.org/10.1137/S106482759935808X
https://doi.org/10.1016/j.cma.2018.02.023
https://doi.org/10.3390/a13040100
https://doi.org/10.3390/a13080199
https://doi.org/10.1137/20M1316445
https://doi.org/10.1137/20M1316445
https://doi.org/10.1137/21M139548X
https://doi.org/10.1137/21M139548X
https://doi.org/10.1016/j.camwa.2022.03.006
https://doi.org/10.1016/j.camwa.2022.03.006
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1017/S0962492920000021
https://doi.org/10.1137/S1064827599355153
https://doi.org/10.1137/S1064827500377435
https://doi.org/10.1137/1.9780898718003

Numerical Algorithms

25. Arndt, D., Bangerth, W., Feder, M., Fehling, M., Gassmöller, R., Heister, T., Heltai, L., Kronbichler,
M., Maier, M., Munch, P., Pelteret, J.-P., Sticko, S., Turcksin, B., Wells, D.: The deal.II library,
version 9.4. J. Numer. Math. 30(3), 231–246 (2022). https://doi.org/10.1515/jnma-2022-0054

26. Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Pelteret,
J.-P., Turcksin, B., Wells, D.: The deal.II finite element library: Design, features, and insights. Comput.
Math. Appl. 81, 407–422 (2021). https://doi.org/10.1016/j.camwa.2020.02.022

27. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long,
K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring,
J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACMTrans. Math. Softw. 31(3),
397–423 (2005). https://doi.org/10.1145/1089014.1089021

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1515/jnma-2022-0054
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1145/1089014.1089021

	A low-rank update for relaxed Schur complement preconditioners in fluid flow problems
	Abstract
	1 Introduction
	2 Initial preconditioners and low-rank approximation
	2.1 Initial preconditioners
	2.2 Low-rank approximation

	3 Error-based update with relaxed initial preconditioner
	3.1 Construction and application of the update

	4 Error analysis
	5 Numerical results
	5.1 Model problem
	5.2 Initial preconditioners
	5.3 Parameters for the low-rank approximation
	5.4 Rank and relaxation parameter

	6 Outlook
	Acknowledgements
	References

