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A Successive Linear Relaxation Method for MINLPs with

Multivariate Lipschitz Continuous Nonlinearities with

Applications to Bilevel Optimization and Gas Transport

Julia Grübel, Richard Krug, Martin Schmidt, Winnifried Wollner

Abstract. We present a novel method for mixed-integer optimization problems
with multivariate and Lipschitz continuous nonlinearities. In particular, we do not
assume that the nonlinear constraints are explicitly given but that we can only eval-

uate them and that we know their global Lipschitz constants. The algorithm is a
successive linear relaxation method in which we alternate between solving a master
problem, which is a mixed-integer linear relaxation of the original problem, and a
subproblem, which is designed to tighten the linear relaxation of the next master
problem by using the Lipschitz information about the respective functions. By do-
ing so, we follow the ideas of Schmidt et al. (2018, 2021) and improve the tackling
of multivariate constraints. Although multivariate nonlinearities obviously increase
modeling capabilities, their incorporation also significantly increases the computa-
tional burden of the proposed algorithm. We prove the correctness of our method
and also derive a worst-case iteration bound. Finally, we show the generality of the
addressed problem class and the proposed method by illustrating that both bilevel
optimization problems with nonlinear and nonconvex lower levels as well as nonlinear
and mixed-integer models of gas transport can be tackled by our method. We provide
the necessary theory for both applications and briefly illustrate the outcomes of the
new method when applied to these two problems.

1. Introduction

Mixed-integer nonlinear optimization problems (MINLPs) form one of today’s most
important classes of optimization models. The reason is, at least, twofold. First, the
capability of modeling nonlinearities allows to include many sophisticated aspects of,
e.g., physics, economics, engineering, or medicine. Second, the incorporation of integer
variables makes it possible to model decision making such as turning on or off a machine
or investing in a product or not. Of course, this modeling flexibility comes at the price of
models that are hard to solve for realistically sized instances since MINLPs are NP-hard
in general [16, 28]. Nevertheless, the theoretical and algorithmic advances of the last
years and decades make it possible today to solve rather large-scale instances to global
optimality in a reasonable amount of time [5]—in particular if problem-specific structural
properties of the model can be exploited algorithmically; see, e.g., [6, 14, 15, 32, 33] for
the convex as well as [1, 46, 48] for the nonconvex case.

In addition, there has been a significant amount of research devoted to the cases in
which only very few structural assumptions can be exploited. This is the framework
considered in this paper since we assume that certain functions of the model are not
given explicitly but can be evaluated and some analytical properties such as Lipschitz
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continuity is known. To illustrate why this is important, let us sketch three areas of
applications in which only few assumptions on the structure of the model (or on specific
parts of the model) can be made. First, many mixed-integer optimization problems
subject to ordinary or partial differential equations fit into this context. In many cases,
approaches in this field are driven by incorporating the so-called control-to-state map into
the optimization model in order to “eliminate” the differential equation from the model;
see, e.g., [4, 7, 22, 49]. This mapping, however, cannot be stated explicitly in general and
one thus has to resort to exploiting analytical properties such as Lipschitz continuity and
the ability to evaluate the mapping, at least in an approximate way. Second, and rather
related to the first example, optimization models incorporating constraints that rely on
calls to expensive simulation software can be cast in the framework mentioned in this
paper as well if enough analytic information is known about the input-output mapping
of the simulation code; see, e.g., [2, 9]. Third and finally, bilevel optimization problems
can also be interpreted as models in which a single constraint makes the problem much
harder to solve [11–13]. In this case, it is the constraint that models the optimality of the
decisions of the lower-level (or follower) problem given the decisions of the leader (which
is the decision maker modeled in the upper-level problem). The best-reply function,
which models the optimal response of the follower, can usually not be written in closed
form but it can be evaluated (by solving the lower-level problem for a given feasible point
of the upper level) and, under suitable assumptions [12], analytical properties such as
Lipschitz continuity can be established.

This paper addresses a special class of MINLPs for which closed-form expressions for
the nonlinearities are not available but Lipschitz continuity is guaranteed with known
Lipschitz constants. To this end, all three areas of application discussed above can be
addressed by the method proposed in this paper. One part of our contribution, indeed, is
that the case studies presented later in Sections 4 and 5 explicitly show the applicability
of our method to bilevel problems with nonconvex lower-level problems (Section 4) and to
problems on gas transport networks that are subject to differential equations (Section 5).
Both are classes of problems that received a lot of attention during the last years; see,
e.g., [3, 11, 30] and [31, 38]. Before we are able to tackle these problems, we first need to
formally state the problem class under consideration, which is what we do in Section 2.
Afterward, in Section 3, we describe the main rationale of the method, present it formally,
and analyze it theoretically. The latter leads to a correctness theorem showing that the
method finitely terminates and we further derive a worst-case iteration bound.

Our work clearly needs to be seen as a generalization of the works [44, 45]. In particu-
lar, We generalize [44] to the multidimensional case for which we present a more effective
numerical scheme compared to [45]. Since our main workhorse is the Lipschitz continuity
of the nonlinearities, we are still in line with the works [24, 25, 27, 39–41, 50], to name
only a few. For a more detailed overview about this field see the textbook [26] and the
references therein as well as [44, 45], where we discussed the positioning of the method
in the literature in more detail.

2. Problem Definition

We consider the problem

min
x

c⊤x (1a)

s.t. Ax ≥ b,
¯
x ≤ x ≤ x̄, x ∈ R

n × Z
m, (1b)

fi(xI(i)) = xr(i), i ∈ [p], (1c)
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where c ∈ R
n+m, A ∈ R

q×(n+m), and b ∈ R
q are given data,

¯
x ∈ R

n×Zm and x̄ ∈ R
n×Zm

are finite bounds, and [p] := {1, . . . , p}. Hence, we consider a linear objective (1a),
linear mixed-integer constraints (1b), and nonlinear constraints defined by the functions
fi : Rli → R. All fi, i ∈ [p], are Lipschitz continuous functions and li = |I(i)| is the
number of their arguments. Moreover, I(i) ⊂ [n] is the index set of the variables on which
the function fi depends. Without loss of generality, we further assume that r(i) ∈ [n]
with r(i) /∈ I(i) for all i ∈ [p]. In what follows, we also write xI(i) = (xI(i), xr(i)) ∈ R

li+1.1

The main challenge when solving Problem (1) is that we assume that the nonlinear
functions fi are not given in closed form but that we can only evaluate them and that
we know their Lipschitz constants.

The ε-relaxed version of the original problem (1) is given by

min
x

c⊤x (2a)

s.t. Ax ≥ b,
¯
x ≤ x ≤ x̄, x ∈ R

n × Z
m, (2b)

|fi(xI(i))− xr(i)| ≤ ε, i ∈ [p], (2c)

where ε > 0 is a prescribed tolerance. A feasible point of (2) is called an ε-feasible point
of Problem (1).

3. The Algorithm

In this section, we introduce an iterative procedure to solve Problem (1) to approx-
imate global optimality. The main idea is to relax all nonlinearities by utilizing the
Lipschitz continuity of these functions. In each iteration, the relaxed problem, which we
will call the master problem, needs to be solved to global optimality. Subsequently, a
subproblem is solved to tighten the relaxation for the next master problem. This proce-
dure is then repeated until an ε-feasible solution is found or until it can be shown that
the original problem is infeasible.

The master problem in iteration k reads

min
x

c⊤x

s.t. Ax ≥ b,
¯
x ≤ x ≤ x̄, x ∈ R

n × Z
m,

xI(i) ∈ Ωk
i , i ∈ [p],

(M(k))

where Ωk
i is a relaxation of the graph of the nonlinearity fi. This relaxation will be stated

in terms of mixed-integer linear constraints; see below. The idea behind is to partition
the domain of fi into a set of boxes that are indexed using indices in Jk

i = {1, . . . , |Jk
i |}

and to linearly relax the graph over each box with the set Ωk
i (j), j ∈ Jk

i , using the
Lipschitz continuity of fi. Hence, we obtain

Ωk
i =

⋃

j∈Jk
i

Ωk
i (j). (3)

After solving the master problem, the boxes that contain the solution xk are identified
and split in smaller boxes to get a finer relaxation for the next iteration. The main
purpose of solving the subproblem afterward is to find good splitting points for these
boxes. To this end, the subproblem determines a point of the graph of each nonlinearity

1Note that we omit transpositions here and in what follows for the ease of better reading.
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Figure 1. Visualization of the subproblem (S(k)) (left) and of the fea-
sible set of the master problem (M(k)) in the next iteration (right) for
a nonlinear function fi : R→ R.

and, at the same time, tries to minimize the distance to the solution of the last master
problem. Hence, the subproblem is given by

min
x̃

‖x̃− xk‖22 s.t. fi(x̃I(i)) = x̃r(i), x̃I(i) ∈ Ω̃k
i (j

k
i ), i ∈ [p], (S(k))

where jki ∈ Jk
i denotes the box with xk

I(i) ∈ Ωk
i (j

k
i ) for all i ∈ [p] and Ω̃k

i (j
k
i ) is a suitably

chosen subset of Ωk
i (j

k
i ). The reason for the use of these subsets will be discussed in

detail in Section 3.2.
Figure 1 depicts the subproblem (S(k)) with the sets Ω̃k

i (j
k
i ) and Ωk

i (j
k
i ) (left) and the

corresponding sets Ωk+1
i (j) and Ωk+1

i (j + 1) of the master problem (M(k)) in the next
iteration (right).

3.1. Construction of the Master Problem’s Feasible Set. We now describe in
detail how we construct the relaxations Ωk

i . First, we define the box

B(
¯
v, v̄) := {x ∈ R

d :
¯
v ≤ x ≤ v̄}

for
¯
v, v̄ ∈ R

d,
¯
v ≤ v̄, and arbitrary dimension d.

For each i ∈ [p], we assume that we are given vectors
¯
vki (j), v̄

k
i (j) ∈ R

li for j ∈ Jk
i such

that the boxes B(
¯
vki (j), v̄

k
i (j)) have pairwise disjoint interiors and cover the bounding

box of xI(i), i.e., we have

B
(

¯
xI(i), x̄I(i)

)

=
⋃

j∈Jk
i

B
(

¯
vki (j), v̄

k
i (j)

)

. (4)

Let Li be the Lipschitz constant of fi on B(
¯
xI(i), x̄I(i)) ⊂ R

li w.r.t. a given norm ‖·‖,
where any (weighted) norm in R

li can be used. Let mk
i (j) be the center point of the box

B(
¯
vki (j), v̄

k
i (j)), i.e.,

mk
i (j) =

1

2

(

¯
vki (j) + v̄ki (j)

)

holds. Due to the Lipschitz continuity of fi, we have

xr(i) ≤ fi(m
k
i (j)) + Li‖xI(i) −mk

i (j)‖,
xr(i) ≥ fi(m

k
i (j))− Li‖xI(i) −mk

i (j)‖
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for xI(i) ∈ B(
¯
vki (j), v̄

k
i (j)). Since ‖xI(i) −mk

i (j)‖ attains its maximum over

B(
¯
vki (j), v̄

k
i (j)) in the vertices of the box, we can replace xI(i) with v̄ki (j). It thus

holds

xr(i) ≤ fi(m
k
i (j)) + Li‖v̄ki (j)−mk

i (j)‖ = fi(m
k
i (j)) +

Li

2
‖v̄ki (j)− ¯

vki (j)‖, (5a)

xr(i) ≥ fi(m
k
i (j))− Li‖v̄ki (j)−mk

i (j)‖ = fi(m
k
i (j))−

Li

2
‖v̄ki (j)− ¯

vki (j)‖ (5b)

for xI(i) ∈ B(
¯
vki (j), v̄

k
i (j)). With this we can define the set Ωk

i (j) for j ∈ Jk
i as the box

Ωk
i (j) :=

{

(xI(i), xr(i)) ∈ R
li+1 :

¯
vki (j) ≤ xI(i) ≤ v̄ki (j),

xr(i) ≤ fi(m
k
i (j)) +

1

2
Li‖v̄ki (j)− ¯

vki (j)‖,

xr(i) ≥ fi(m
k
i (j)) −

1

2
Li‖v̄ki (j)− ¯

vki (j)‖
}

.

The next step is to define the set Ωk
i as the union of all Ωk

i (j); see (3). Using (4), we
obtain a covering of the bounding box of xI(i) and via (5), we obtain bounds for xr(i).

Hence, it follows that Ωk
i is a relaxation of the graph of the function fi.

Proposition 3.1. It holds graph(fi) ⊆ Ωk
i on B(

¯
xI(i), x̄I(i)) for all i ∈ [p] and all k.

For what follows, we abbreviate

X k
i :=

{

B(
¯
vki (1), v̄

k
i (1)), . . . , B(

¯
vki (|Jk

i |), v̄ki (|Jk
i |))

}

,

i.e., X k
i is the set of boxes that is used to define Ωk

i . In our algorithm, we use Ωk
i to

replace the nonlinear constraints fi(xI(i)) = xr(i) for all i ∈ [p] in Problem (1) in order
to obtain a relaxation.

Lemma 3.2. The master problem (M(k)) can be modeled as mixed-integer linear prob-
lem.

Proof. We can write (M(k)) using the following Big-M formulation:

min
x,z

c⊤x (6a)

s.t. Ax ≥ b,
¯
x ≤ x ≤ x̄, x ∈ R

n × Z
m, (6b)

xI(i) ≥ ¯
vkI(i)(j)−M(1− zk,ji ), i ∈ [p], j ∈ Jk

i , (6c)

xI(i) ≤ v̄kI(i)(j) +M(1− zk,ji ), i ∈ [p], j ∈ Jk
i , (6d)

xr(i) ≤ fi(m
k
i (j)) +

1

2
Li‖v̄ki (j)− ¯

vki (j)‖+M(1− zk,ji ), i ∈ [p], j ∈ Jk
i , (6e)

xr(i) ≥ fi(m
k
i (j))−

1

2
Li‖v̄ki (j)− ¯

vki (j)‖ −M(1− zk,ji ), i ∈ [p], j ∈ Jk
i , (6f)

∑

j∈Jk
i

zk,ji = 1, i ∈ [p], (6g)

zk,ji ∈ {0, 1}, i ∈ [p], j ∈ Jk
i . (6h)

The rationale of this model is as follows. For each nonlinearity i ∈ [p] and each box j ∈ Jk
i ,

we introduce a binary variable zk,ji that indicates whether the solution lies in this box

or not. If zk,ji = 1, the Constraints (6c)–(6f) are equivalent to the definition of Ωk
i (j). If

zk,ji = 0, then (6c)–(6f) are always fulfilled if the constant M is chosen sufficiently large.
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Constraint (6g) finally ensures that for each nonlinearity i ∈ [p] exactly one box j ∈ Jk
i

is chosen. �

Let us remark that it is always possible in our setting to obtain finite and sufficiently
large values M by using the finite bounds on the variables in (1b).

3.2. Construction of the Subproblem. We now introduce the chosen subset of Ωk
i (j)

used in the subproblem (S(k)). We define this set as

Ω̃k
i (j) = Ωk

i (j) ∩ Ω̂k
i (j),

using the further subset

Ω̂k
i (j) = {(xI(i), xr(i)) ∈ R

li+1 : (1− λ)
¯
vki (j) + λv̄ki (j) ≤ xI(i) ≤ λ

¯
vki (j) + (1 − λ)v̄ki (j)},

for some λ ∈ (0, 1/2]. This ensures that the solution of the subproblem (S(k)) cannot be
arbitrarily close to the edges of the used box if λ > 0 is chosen appropriately.

Let us also note that for each iteration k ∈ N, the subproblem (S(k)) can be separated
into p smaller problems under reasonable assumptions. If the index sets I(i) = (I(i), r(i))
are non-overlapping, i.e.,

(I(i) ∪ {r(i)}) ∩ (I(j) ∪ {r(j)}) = ∅ for all i, j ∈ [p], i 6= j, (7)

these smaller problems can be solved in parallel. The above assumption can always be
satisfied by introducing additional auxiliary variables.

Lemma 3.3. Suppose that the index sets I(i) = (I(i), r(i)) are non-overlapping, i.e.,
(7) holds. Then, the subproblem (S(k)) is completely separable, i.e., we can solve the
subproblem in iteration k by solving p smaller problems given by

min
x̃I(i)

‖x̃I(i) − xk
I(i)‖22 s.t. fi(x̃I(i)) = x̃r(i), x̃I(i) ∈ Ω̃k

i (j
k
i ). (8)

Proof. The constraints of (S(k)), i.e.,

fi(x̃I(i)) = x̃r(i), x̃I(i) ∈ Ω̃k
i (j

k
i ), i ∈ [p],

completely decouple along i ∈ [p] and so does the objective function

‖x̃− xk‖22 =
∑

i∈[p]

‖x̃I(i) − xk
I(i)‖22.

Therefore, the solution of the subproblem (S(k)) can be obtained by solving Problem (8)
for all i ∈ [p]. �

3.3. Formal Statement of the Algorithm. Before we can formally introduce the
algorithm, we need the following notation. Let B(

¯
v, v̄) ⊆ R

d be a box with an interior
point x ∈ intB(

¯
v, v̄), i.e.,

¯
v < x < v̄. The point x splits the box into a set of boxes that

we define as

S(
¯
v, v̄, x) := {B(

¯
w, w̄) : (

¯
wℓ =

¯
vℓ ∧ w̄ℓ = xℓ) ∨ (

¯
wℓ = xℓ ∧ w̄ℓ = v̄ℓ) for all ℓ ∈ [d]}.

We can utilize this notation to get a finer relaxation of graph(f) by splitting an element
of X k

i using the solution of the subproblem (S(k)) as the splitting point. This yields a
set of smaller boxes that still fulfills Condition (4) as the following proposition states.

Proposition 3.4. For a given box B(
¯
v, v̄) ⊂ R

li and an interior point x ∈ intB(
¯
v, v̄),

the set S(
¯
v, v̄, x) contains 2li smaller boxes that have pairwise disjoint interiors and that

completely cover the box B(
¯
v, v̄), i.e.,

B(
¯
v, v̄) =

⋃

b∈S(
¯
v,v̄,x)

b.
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Algorithm 1 Iterative Method to Approximately Solve Problem (1)

Require: Problem (1) and ε > 0.
Ensure: An approximate globally optimal and ε-feasible point for Problem (1) or an

indication that Problem (1) is infeasible.

1: Set k ← 0 and initialize X 0
i = {B(

¯
xI(i), x̄I(i))} for all i ∈ [p].

2: for k = 0, 1, 2, . . . do

3: Solve the master problem (M(k)) to global optimality.
4: if (M(k)) is infeasible then

5: return “Problem (1) is infeasible.”
6: end if

7: Let xk denote the optimal solution of (M(k)).
8: if |fi(xk

I(i))− xk
r(i)| ≤ ε for all i ∈ [p] then

9: return xk.
10: end if

11: Determine the boxes jki ∈ Jk
i for all i ∈ [p].

12: Solve the subproblem (S(k)) and let x̃k denote the optimal solution.
13: for i ∈ [p] do

14: if |fi(xk
I(i))− xk

r(i)| > ε then

15: X k+1
i ←

(

X k
i \ {B(

¯
vki (j

k
i ), v̄

k
i (j

k
i ))}

)

∪ S
(

¯
vki (j

k
i ), v̄

k
i (j

k
i ), x̃

k
I(i)

)

.

16: else

17: X k+1
i ← X k

i .
18: end if

19: end for

20: end for

We can now present the complete method, which is given in Algorithm 1. Before
we prove its correctness, let us first discuss its basic functionality. After the master
problem (M(k)) is solved in Step 3, it is checked in Step 8 if its solution is already ε-
feasible for the original problem. To determine the boxes jki ∈ Jk

i in Step 11 one can

simply check the indicator variables zk,ji of the MIP formulation (6). If the solution is
not yet ε-feasible, then there are nonlinearities fi that have feasibility violations larger
than ε. For these nonlinearities we refine the relaxation of the master problem in Step 15
and re-iterate.

Note that it is not necessary for the correctness of Algorithm 1 to solve the subprob-
lem (S(k)) to global optimality. Our rationale, however, is that optimal solutions of the
subproblems yield better splitting points that lead to faster convergence in practice. For
the correctness of the algorithm it is sufficient to find feasible points of (S(k)) that are
guaranteed to exist due to the following lemma.

Lemma 3.5. All subproblems (S(k)) are feasible if Property (7) is satisfied.

Proof. This claim follows from Proposition 3.1 and the definition of Ω̃k
i (j). �

Next, we prove that Algorithm 1 always terminates after finitely many iterations.

Theorem 3.6. There exists a constant K <∞ such that Algorithm 1 either terminates
with an approximate global optimal and ε-feasible point xk∗

or with the indication of
infeasibility in an iteration k∗ ≤ K.



8 J. GRÜBEL, R. KRUG, M. SCHMIDT, W. WOLLNER

Proof. The box Ωk
i (j) is bounded for each iteration k and all i ∈ [p] and j ∈ Jk

i . For the
xr(i)-coordinate, the bounding inequalities are given by

fi(m
k
i (j))−

1

2
Li‖v̄ki (j)− ¯

vki (j)‖ ≤ xr(i) ≤ fi(m
k
i (j)) +

1

2
Li‖v̄ki (j)− ¯

vki (j)‖.

Therefore the corresponding side length of the box Ωk
i (j) in its xr(i)-coordinate is

dkr(i)(j) := Li‖v̄ki (j)− ¯
vki (j)‖.

If dkr(i)(j) ≤ ε holds, then the inequality

|fi(xk
I(i))− xk

r(i)| > ε

in Step 14 of Algorithm 1 cannot be fulfilled. It follows that the box B(
¯
vki (j

k
i ), v̄

k
i (j

k
i ))

will not be split but remains the same in Step 17.
Next, we analyze how dkr(i)(j) changes if a box is split into smaller boxes. Let

B
(

¯
vk+1
i (j), v̄k+1

i (j)
)

∈ S
(

¯
vki (j

k
i ), v̄

k
i (j

k
i ), x̃

k
i

)

be one of the smaller boxes that is added to X k
i in Step 15. The side length dk+1

r(i) (j) of

the corresponding box Ωk+1
i (j) can be bounded from above via

dk+1
r(i) (j) = Li‖v̄k+1

i (j)−
¯
vk+1
i (j)‖ ≤ (1 − λ)Li‖v̄ki (jki )− ¯

vki (j
k
i )‖ = (1 − λ)dkr(i)(j

k
i ).

This means that dk
r(i)(j) is decreased by at least a factor of (1 − λ) if a box is split in

Step 15. Since
(

(1− λ)k
)

k∈N
is a geometric sequence with |1− λ| < 1, it converges to

zero, i.e., (1−λ)k → 0 as k →∞. It follows that any box B(
¯
vki (j), v̄

k
i (j))—including the

first box B(
¯
xI(i), x̄I(i))—can only be split finitely many times in Step 15 before the side

length dk
r(i)(j) of Ωk

i (j) fulfills dk
r(i)(j) ≤ ε.

Since the index set [p] is finite, there are only finitely many boxes in X k
i for all i ∈ [p]

and all k. These boxes can only be split finitely many times. Hence, there exists an
iteration K < ∞ in which no box will be split in Step 15. This, however, can only be
the case if the if-condition in Step 14 does not hold for all i ∈ [p]. Thus, we have

|fi(xK
I(i))− xK

r(i)| ≤ ε for all i ∈ [p],

which is the if-condition in Step 8. This means that the algorithm terminates in Step 9
in an iteration K. Hence, it follows that there exists a K < ∞ such that Algorithm 1
terminates in Step 5 or 9 in an iteration k∗ ≤ K. �

We close this section by stating and proving a result for the worst-case number of
required iterations of Algorithm 1.

Theorem 3.7. Algorithm 1 terminates after at most

K =
∑

i∈[p]

Si
∑

k=0

2kli

iterations with

Si =

⌈

log(1−λ)

(

ε

Li‖x̄I(i) − ¯
xI(i)‖

)⌉

for i ∈ [p].
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Proof. From the proof of Theorem 3.6 we know that a box B(
¯
vki (j

k
i ), v̄

k
i (j

k
i )) can only be

split finitely many times before the side length dk
r(i)(j) of Ωk

i (j) satisfies dk
r(i)(j) ≤ ε. We

can give an upper bound for how many iterations this takes for the first box B(
¯
xI(i), x̄I(i))

by solving the equation
(1− λ)kLi‖x̄I(i) − ¯

xI(i)‖ = ε

for k, which yields

k = log(1−λ)

(

ε

Li‖x̄I(i) − ¯
xI(i)‖

)

.

Since the box B(
¯
vki (j

k
i ), v̄

k
i (j

k
i )) will not be split anymore if dk

r(i)(j) ≤ ε, we can round

this value to obtain

Si =

⌈

log(1−λ)

(

ε

Li‖x̄I(i) − ¯
xI(i)‖

)⌉

.

For each box that is split, there are 2li smaller boxes that are added to X k
i . Therefore,

for each i ∈ [p] the maximal number of iterations required until there are no boxes left
in X k

i that can be split is bounded from above by

Si
∑

k=0

(

2li
)k

=

Si
∑

k=0

2k li . (9)

Since it is possible that in each iteration, there is only a single nonlinearity i ∈ [p] for
which a box is split, we have to sum up (9) for each i ∈ [p] to get

K =
∑

i∈[p]

Si
∑

k=0

2kli

as an upper bound for the required number of iterations of Algorithm 1. �

Remark 3.8. Theorem 3.7 states that choosing λ = 0.5 results in the lowest number of
iterations in the worst-case. Then, no subproblem (S(k)) is needed as one can simply
evaluate the nonlinearity fi in the center point mk

i (j
k
i ) of the current box to receive the

splitting point. However, in practice it can be better to choose a smaller parameter λ,
which allows the splitting point to be closer to the master problem’s solution and which,
thus, may result in a finer approximation of the nonlinearity near the optimal solution
of Problem (1).

4. Application to Nonlinear Bilevel Problems

The method developed in the previous section can be applied to nonlinear bilevel
problems with nonconvex lower-level models, which is an extremely challenging class of
problems. To illustrate this, we consider optimistic MIQP-QP bilevel problems of the
form

min
x,y

1

2
x⊤Hux+ c⊤u x+

1

2
y⊤Guy + d⊤u y

s.t. Ax+By ≤ a,
¯
x ≤ x ≤ x̄, x ∈ R

nx ,

y ∈ argmin
ỹ

{

1

2
ỹ⊤Glỹ + d⊤l ỹ : Cx+Dỹ ≤ b,

¯
y ≤ ỹ ≤ ȳ, ỹ ∈ R

ny

}

,

(10)

where x ∈ R
nx and y ∈ R

ny denote the upper- and lower-level variables, which are
finitely bounded by

¯
x, x̄,

¯
y, and ȳ. Further, we have matrices A ∈ R

mu×nx , B ∈ R
mu×ny ,

C ∈ R
ml×nx , D ∈ R

ml×ny , as well as right-hand side vectors a ∈ R
mu and b ∈ R

ml . In
addition, we have cu ∈ R

nx and du, dl ∈ R
ny . Finally, Hu ∈ R

nx×nx , Gu ∈ R
ny×ny are



10 J. GRÜBEL, R. KRUG, M. SCHMIDT, W. WOLLNER

positive semidefinite and symmetric matrices, while Gl ∈ R
ny×ny is a possibly indefinite

and symmetric matrix. Thus, the upper level is a convex-quadratic problem over linear
constraints and the lower-level problem

min
ỹ

1

2
ỹ⊤Glỹ + d⊤l ỹ s.t. Cx+Dỹ ≤ b,

¯
y ≤ ỹ ≤ ȳ, ỹ ∈ R

ny , (11)

is an x-parameterized and continuous but nonconvex quadratic problem. Let ϕ(·) be the
optimal-value function of the lower level, i.e.,

ϕ(x) := min
ỹ

{

1

2
ỹ⊤Glỹ + d⊤l ỹ : Cx+Dỹ ≤ b,

¯
y ≤ ỹ ≤ ȳ, ỹ ∈ R

ny

}

.

With this, we can rewrite Problem (10) equivalently as the single-level problem

min
x,y

1

2
x⊤Hux+ c⊤u x+

1

2
y⊤Guy + d⊤u y (12a)

s.t. Ax+By ≤ a, Cx +Dy ≤ b, (12b)

¯
x ≤ x ≤ x̄,

¯
y ≤ y ≤ ȳ, x ∈ R

nx , y ∈ R
ny , (12c)

1

2
y⊤Gly + d⊤l y ≤ ϕ(x), (12d)

see, e.g., [12]. We now reformulate Problem (12) so that it fits into the framework
introduced above. Therefore, we introduce the auxiliary variables η1 and η2 as well as
the nonlinear function f : Rny → R with f(y) = 1/2y⊤Gly+d⊤l y. Based on this notation,
Problem (12) can be restated as

min
x,y,η1,η2

1

2
x⊤Hux+ c⊤u x+

1

2
y⊤Guy + d⊤u y (13a)

s.t. Ax+By ≤ a, Cx+Dy ≤ b, (13b)

¯
x ≤ x ≤ x̄,

¯
y ≤ y ≤ ȳ, x ∈ R

nx , y ∈ R
ny , (13c)

η2 − η1 ≤ 0, ϕ(x) = η1, f(y) = η2, η1, η2 ∈ R. (13d)

Now, the method developed in Section 3 can be applied to (13) if (i) the nonconvex
functions ϕ and f are Lipschitz continuous on the projections of the bilevel constraint
region onto the decision space of the upper and lower level, respectively, i.e., on the
domains

Fx :=
{

x ∈ [
¯
x, x̄] : ∃y ∈ R

ny such that Ax+By ≤ a, Cx +Dy ≤ b,
¯
y ≤ y ≤ ȳ

}

,

Fy :=
{

y ∈ [
¯
y, ȳ] : ∃x ∈ R

nx such that Ax+By ≤ a, Cx+Dy ≤ b,
¯
x ≤ x ≤ x̄

}

,

and if (ii) the associated Lipschitz constants are computable.
What makes things more complicated compared to the general setup described in

Section 3 is that we can only evaluate the optimal-value function ϕ(x) but we cannot
optimize over it. Thus, we cannot use subproblem (S(k)) directly to obtain a new splitting
point. On the other hand, following the strategy to take the box center m as the new
splitting point simplifies solving problem (S(k)) to evaluating ϕ(m). More precisely, using
the box center corresponds to setting λ = 1/2. This, however, is only applicable if ϕ(m)
is well-defined, which we ensure with the following assumption.

Assumption 1. The set T (x) := {y ∈ R
ny : Dy ≤ b − Cx,

¯
y ≤ y ≤ ȳ} is nonempty for

all x ∈ B(
¯
x, x̄).

This assumption implies that −∞ < ϕ(x) < +∞ for all x ∈ B(
¯
x, x̄), i.e., a minimizer y

of Problem (11) exists for all x ∈ B(
¯
x, x̄) and, thus, for every possible box center m.
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4.1. Lipschitz Continuity Properties. To apply our method with the outlined mod-
ifications for the subproblem to Problem (13), it remains to show that the properties (i)
and (ii) are fulfilled. We start with the nonconvex function f . Since the relevant do-
main B(

¯
y, ȳ) of this function is compact, continuous differentiability of f implies global

Lipschitz continuity of f on this set. Since B(
¯
y, ȳ) is convex and compact, the tightest

Lipschitz constant can be computed by solving the optimization problem

max
y∈B(

¯
y,ȳ)
||Gly + dl||. (14)

Note that it would also be possible to compute the Lipschitz constant in (14) over the
feasible set of the master problem, i.e., over the set Fy. However, this involves solving
an optimization problem not over a simple box but over a more complex polytope. In
our computational study, we test both variants. We will denote the former method as
the “fast” method and the latter as the “slow” method. In the absence of lower- and
upper-level constraints except for simple variable bounds, both approaches coincide.

Next, we continue with the more difficult case of proving Lipschitz continuity of the
optimal-value function ϕ. To this end, we exploit a variant of the Hoffman Lemma; for
the original version see the main theorem in [23] or Lemma 5.8 in [47]. For the ease
of presentation, we assume from now on that the finite bounds on y are part of the
lower-level inequality constraints and, thus, also part of the matrix C.

Lemma 4.1 (see Corollary 5.1 in [47]). There exists LH > 0 such that for any x, x̃ ∈
B(

¯
x, x̄) it holds: For any y ∈ T (x) we can find a point ỹ ∈ T (x̃) with

||ỹ − y|| ≤ LH ||C(x − x̃)|| ≤ LH ||C|| ||x̃− x||.
The scalar LH is the so-called Hoffman constant. A sharp characterization of this

constant and an algorithm to compute it can be found in [35, 37]. Based on the intro-
duced variant of the Hoffman Lemma, we can now establish Lipschitz continuity of the
optimal-value function ϕ under Assumption 1. Our proof follows the idea of the proof
of Corollary 5.2 in [47]. There, the Lipschitz continuity of the optimal-value function of
a linear program with right-hand side perturbation is demonstrated. In contrast to this,
we have a quadratic program with right-hand side perturbation.

Theorem 4.2. Suppose Assumption 1 holds. Then, there exists L > 0 such that for any
x, x̃ ∈ B(

¯
x, x̄) it holds

|ϕ(x̃) − ϕ(x)| ≤ L||x̃− x||.
Proof. Let any x, x̃ ∈ B(

¯
x, x̄) be given. By Assumption 1, minimizers y and ỹ of Prob-

lem (11) exist for x and x̃, respectively. By Lemma 4.1, for y we can find a point ŷ ∈ T (x̃)
such that

||ŷ − y|| ≤ LH ||C|| ||x̃− x||
holds for some LH > 0. Based on this, we can conclude

ϕ(x̃) − ϕ(x)

≤ 1

2
ŷ⊤Glŷ + d⊤l ŷ −

(

1

2
y⊤Gly + d⊤l y

)

=
1

2
ŷ⊤Glŷ −

1

2
y⊤Gly + d⊤l (ŷ − y)

=
1

2
ŷ⊤Glŷ −

1

2
ŷ⊤Gly +

1

2
ŷ⊤Gly −

1

2
y⊤Gly +

1

2
y⊤Glŷ −

1

2
y⊤Glŷ + d⊤l (ŷ − y)
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=
1

2
ŷ⊤Gl(ŷ − y) +

1

2
y⊤Gl(ŷ − y) +

1

2
ŷ⊤Gly −

1

2
y⊤Glŷ + d⊤l (ŷ − y)

=
1

2

(

ŷ⊤Gl + d⊤l + y⊤Gl + d⊤l
)

(ŷ − y) +
1

2
y⊤G⊤

l ŷ −
1

2
y⊤Glŷ

≤ 1

2

(

||G⊤
l ŷ + dl||+ ||G⊤

l y + dl||
)

||ŷ − y||
≤ LGl

||ŷ − y||
≤ LH ||C||LGl

||x̃− x||,
where we use the symmetry of Gl and LGl

:= max{||Gly + dl|| : x ∈ B(
¯
x, x̄), y ∈ T (x)},

which is well-defined due to Assumption 1.
Analogously, by Lemma 4.1, for ỹ we can find a point ŷ ∈ T (x) such that

||ŷ − ỹ|| ≤ LH ||C|| ||x− x̃||
holds for the same LH > 0. With the same arguments as before, we obtain

ϕ(x) − ϕ(x̃) ≤ LH ||C||LGl
||x̃− x||.

Consequently,

|ϕ(x̃) − ϕ(x)| ≤ LH ||C||LGl
||x̃− x|| =: L||x̃− x||

holds and the claim follows. �

4.2. Implementation Details. In this section, we discuss some implementation details
to clarify how we modified and extended Algorithm 1 to get a more tailored method for
the considered bilevel setup.

4.2.1. “Slow” and “Fast” Method for ϕ. Because T (x) ⊆ B(
¯
y, ȳ) holds for all x ∈ B(

¯
x, x̄),

we immediately get

LGl
= max

x∈B(
¯
x,x̄),y∈T (x)

||Gly + dl|| ≤ max
y∈B(

¯
y,ȳ)
||Gly + dl||.

Since we have to compute LGl
for computing the Lipschitz constant of ϕ, we can distin-

guish between the “fast” and the “slow” method for ϕ as well.

4.2.2. Additional Nonlinearities. Bilinear nonlinearities of the form xiyj in the lower- or
upper-level objective function can be easily reformulated to fit in our setup. If such
nonlinearities occur, e.g., in the lower level, an additional variable yk is introduced in
the lower level. Moreover, the constraint yk = xi is added to the lower level, while
the nonlinear objective term xiyj is replaced by the product ykyj. The resulting bilevel
problem then fits in our setup.

4.2.3. Box Filtering. Figure 2 illustrates the case that after splitting an initial bounding
box, here [0, 3]2, a few times, there might be boxes (such as [2.25, 3]2) that do not
include any point from the bilevel constraint region, which is colored in red in Figure 2.
To avoid further investigation of these boxes, we can detect these boxes by checking
if the intersection of the bilevel constraint region with newly created boxes is empty.
However, this requires to solve an LP feasibility problem and thus creates some additional
computational effort.

Note that this box filtering is not necessary if there are no lower-level and upper-
level constraints except for simple variable bounds since the intersection of the bilevel
constraint region and every possible box created by the algorithm can never be empty.
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1 2 3

1

2

3

x

y

Figure 2. Example for box filtering

4.2.4. Tighter Lipschitz Constants for Box-Constrained Lower Levels. For instances with
simple variable bounds on the lower level that are not influenced by upper-level decisions,
we can compute tighter Lipschitz constants for ϕ. To this end, we now explicitly take into
account bilinear terms of the form xiyj in the lower-level objective function and do not
reformulate these terms as described in Section 4.2.2. Hence, the lower-level objective
function is given by

f(y, x) =
1

2

(

y
x

)⊤ [

E F⊤

F 0

](

y
x

)

+

(

e
0

)⊤ (

y
x

)

,

where E and F 6= 0 are suitably chosen matrices and e is a suitably chosen vector. Now,
for given x̂, x̃ ∈ B(

¯
x, x̄), let ŷ and ỹ be defined as

ŷ := argmin
y∈B(

¯
y,ȳ)

f(y, x̂), ỹ := argmin
y∈B(

¯
y,ȳ)

f(y, x̃), (15)

where B(
¯
y, ȳ) is the lower level’s feasible set in this case. Note that B(

¯
y, ȳ) = T (x) holds

for all x ∈ B(
¯
x, x̄) because x only influences the lower-level objective function but not

the lower level’s feasible set. Thus, it holds

ϕ(x̂) − ϕ(x̃) = f(ŷ, x̂)− f(ỹ, x̃) ≤ f(ỹ, x̂)− f(ỹ, x̃)

= ỹ⊤F⊤x̂− ỹ⊤F⊤x̃ ≤ ||F ỹ|| ||x̂− x̃||.
Note that f(ŷ, x̂) ≤ f(ỹ, x̂) holds since ŷ minimizes f(y, x̂) over B(

¯
y, ȳ) and ỹ ∈ B(

¯
y, ȳ).

This is not necessarily true for the case of general lower-level constraints, i.e., when
optimizing in (15) over T (x̂) and T (x̃), respectively, since T (x̂) 6= T (x̃) and ỹ /∈ T (x̂)
might hold. Analogously, we obtain ϕ(x̃) − ϕ(x̂) ≤ ||F ŷ|| ||x̂− x̃|| and, consequently,

|ϕ(x̂) − ϕ(x̃)| ≤ LF ||x̂− x̃||
holds with LF := max{||Fy|| : y ∈ B(

¯
y, ȳ)}. Thus, LF is a valid Lipschitz constant.

4.2.5. Big-Ms. As a valid Big-M in the master problem, we use the maximum of ||ȳ −

¯
y||∞, ||x̄−

¯
x||∞, and

max
y∈B(

¯
y,ȳ)

1

2
y⊤Gly + dly − min

y∈B(
¯
y,ȳ)

1

2
y⊤Gly + dly.

4.2.6. Lipschitz Constant Updates. The Lipschitz constants are updated after each box
splitting since it is to be expected that the constants get smaller if they are computed
on smaller sets.
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Table 1. Overview of the considered BASBLib instances. The num-
ber of lower- and upper-level constraints do not contain simple variable
bounds and do not contain the additional constraints obtained due to
the reformulation discussed in Section 4.2.2. Contrarily, the additional
variables due to this reformulation are counted.

ID nx mu ny ml Gl � 0?

as_1981_01 4 1 4 4 yes
b_1998_02 2 0 3 0 no
b_1998_03 2 0 3 0 no
b_1998_04 1 0 2 0 no
b_1998_05 1 0 2 0 no
d_1978_01 2 0 4 0 yes
d_2000_01 2 0 2 2 no
fl_1995_01 2 0 4 0 yes
sa_1981_01 1 1 2 1 yes
sa_1981_02 2 2 4 0 yes

4.3. Numerical Results. In our computational study below, we consider the QP-QP
instances from the BASBLib library [36]. We first describe which instances need to be
excluded because they do not fit into our setup. First, we exclude the three instances
d_1992_01, b_1984_02, and dd_2012_02 because they contain nonlinear constraints.
Next, the two instances y_1996_02 and lmp_1987_01 are excluded due to nonconvex
upper-level objective functions, i.e., the matrix Hu is not positive semidefinite for these
instances. The instance sc_1998_01 is not considered because C is the zero matrix and,
thus, the resulting optimization problem is not a “true” bilevel problem because the lower-
level problem is not constrained by upper-level variables. Such problems can easily be
solved by backwards induction. Finally, we have to exclude the following four instances
because they violate Assumption 1:

• tmh_2007_01 (lower level is not feasible for x = 9),
• b_1988_01 (lower level is not feasible for x = 9),
• b_1998_07 (lower level is not feasible for x = 9), and
• cw_1990_02 (lower level is not feasible for x = 7).

In total, 10 instances (out of 20) remain; see Table 1. Note that, due to the applied
reformulations as described in Section 4.2.2, the reported number of variables might
differ from those reported in the BASBLib. Moreover, the reported number of constraints
does not include additional constraints necessary due to these reformulations. Variable
bounds are also not counted as constraints.

We implemented the algorithm in Python 3.7.9. All computations were conducted on a
machine with an Intel(R) Core(TM) i7-8565U CPU with 4 cores, 1.8GHz to 4.6GHz, and
16GBRAM. The master problem (M(k)) and the subproblem (S(k)) are modeled using
Pyomo 5.7.2 [21] and solved with Gurobi 9.1.0 [20]. The Hoffman constant is computed
with the algorithm described in [37] using the MATLAB code made publicly available by
the authors of [37].2 We set ε = 10−1 and use a time limit of 5 h. If the instance is solved
within the time limit, we decrease ε by subsequently dividing by ten until ε = 10−5 is
reached to see how much accuracy can be reached by our algorithm in the given time

2The MATLAB code can be found at http://www.andrew.cmu.edu/user/jfp/hoffman.html .

http://www.andrew.cmu.edu/user/jfp/hoffman.html
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Table 2. Computational results with “slow” method and box filtering.
Runtimes are given in seconds.

ID ε k runtime final ε diff to opt. diff to opt. value

as_1981_01 10−1 166 3862 0.092 0.000 0.000
as_1981_01 10−2 580 18 000 0.015 0.000 0.000

d_2000_01 10−1 37 117 0.075 0.031 0.000
d_2000_01 10−2 64 209 0.010 0.024 0.000
d_2000_01 10−3 95 377 0.001 0.000 0.000
d_2000_01 10−4 123 513 0.000 0.000 0.000
d_2000_01 10−5 151 692 0.000 0.000 0.000

sa_1981_01 10−1 2092 18 000 0.286 0.378 3.981

sa_1981_02 10−1 464 18 000 14.862 4.550 89.157

limit. The obtained results for the case of box filtering and determining the Lipschitz
constant with the “slow” method are summarized in Table 2, while the results for the
“fast” method without box filtering are given in Table 3. Note that Table 2 contains
results for 4 instances while Table 3 contains results for 10 instances. The reason is
that 6 instances only have simple variable bounds so that there is no difference between
the “slow” and the “fast” method. In these cases, we only list the respective instances
in Table 3. The tables are organized as follows. The first column states the ID of the
instance and the second one states the used ε for the termination criterion. The number
of required iterations is denoted by k, “runtime” states the runtimes in seconds, and the
“final ε” column contains the tolerance that is actually reached. Finally, the columns “diff
to opt.” and “diff to opt. value” contain the 2-norm distance of our solution to the one
reported in the BASBLib and the respective difference in the objective value.

Before we discuss the results in detail, let us comment on two important aspects. First,
it can be expected that our method performs rather bad if there are multiplicities. To
get a finer relaxation, all boxes covering the multiple solutions have to be split at least
once if ε-feasibility is not reached by the first split. Second, it is to be expected that
our method performs rather good for instances with small variable ranges, e.g., ranges
such as [0, 1]nx × [0, 1]ny instead of [0, 1000]nx × [0, 1000]ny , as well as small lower-level
objective function ranges. In particular, the range of the lower level’s objective function
is small in the case of small Lipschitz constants. The Lipschitz constant derived here
for the optimal-value function is valid for all quadratic programs with right-hand side
perturbations that satisfy Assumption 1. However, for specific bilevel applications much
tighter Lipschitz constants might be derived by exploiting problem-specific structural
properties.

In what follows, we comment on the obtained computational results in the light of
these two aspect. Multiplicities are reported for instance as_1981_01. As can be seen
in Table 2, for ε = 10−2, this instance is not solved to ε-feasibility within the time limit
despite the fact that an optimal solution is already reached. This effect is even enhanced
if box filtering is deactivated; see Table 3. In this case, the final ε is 47.3, which is very
large. As this instance has rather many general constraints, box filtering improves the
solution process significantly. However, for instances with less general constraints like
sa_1981_01 and sa_1981_02, the additional computational burden of the “slow” method
and box filtering can outweigh its advantages.
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Table 3. Computational results with “fast” method and no box filtering.
Runtimes are given in seconds.

ID ε k runtime final ε diff to opt. diff to opt. value

as_1981_01 10−1 560 18 000 47.344 10.440 0.000

b_1998_02 10−1 4 1 0.025 0.000 0.000
b_1998_02 10−2 8 5 0.009 0.004 −0.000
b_1998_02 10−3 16 11 0.001 0.002 −0.000
b_1998_02 10−4 40 36 0.000 0.000 0.000
b_1998_02 10−5 37 33 0.000 0.000 0.000

b_1998_03 10−1 5 3 0.037 0.000 0.000
b_1998_03 10−2 10 7 0.008 0.000 0.000
b_1998_03 10−3 14 8 0.001 0.001 0.000
b_1998_03 10−4 27 22 0.000 0.000 0.000
b_1998_03 10−5 84 102 0.000 0.000 0.000

b_1998_04 10−1 1180 8038 0.061 0.021 0.178
b_1998_04 10−2 1538 18 000 0.058 0.019 0.150

b_1998_05 10−1 1485 18 000 0.477 0.002 0.002

d_1978_01 10−1 100 237 0.059 0.491 0.356
d_1978_01 10−2 507 18 000 0.029 0.329 0.237

d_2000_01 10−1 179 193 0.097 0.000 0.000
d_2000_01 10−2 136 132 0.007 0.000 0.000
d_2000_01 10−3 177 272 0.001 0.000 0.000
d_2000_01 10−4 206 357 0.000 0.000 0.000
d_2000_01 10−5 385 1078 0.000 0.000 0.000

fl_1995_01 10−1 570 18 000 0.123 0.414 0.855

sa_1981_01 10−1 330 205 0.082 0.203 2.316
sa_1981_01 10−2 830 1221 0.009 0.068 0.778
sa_1981_01 10−3 3120 18 000 0.001 0.018 0.203

sa_1981_02 10−1 725 18 000 0.827 1.060 20.995

Finally, let us discuss the results in dependence of the tightness of the Lipschitz
constants and the size of the variable ranges. To this end, we first order the considered
instances by increasing Lipschitz constants of the function f : b_1998_02, b_1998_03,
d_2000_01, d_1978_01, fl_1995_01, sa_1981_02, as_1981_01, sa_1981_01,
b_1998_04, and b_1998_05.3 Indeed, the three instances with lowest Lipschitz
constants are solved for the smallest ε within the time limit; see Tables 2 and 3. In
addition to these 3 instances, the “fast” method with no box filtering also solves the
instances d_1978_01, sa_1981_01, and b_1998_04 at least for the initial ε. Besides
having one of the lowest Lipschitz constants, the instance d_1978_01 has relatively low

3In case of identical Lipschitz constants, alphabetical sorting is used. The ordering of the con-
sidered instances by increasing Lipschitz constants of the optimal-value function ϕ is slightly different:
b_1998_02, b_1998_03, d_1978_01, fl_1995_01, sa_1981_02, d_2000_01, sa_1981_01, b_1998_04,

b_1998_05, and as_1981_01.
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variable ranges. The other two instances sa_1981_01 and b_1998_04 have relatively
low number of lower- and upper-level variables, which leads to reduced dimensions
of the boxes and therefore of the worst-case number of iterations. Nevertheless, the
disadvantage of the large Lipschitz constant of b_1998_04 is reflected in the results as
for ε = 10−1 already over 2 h are needed to compute an ε-feasible solution.

In total, our method solves 7 out of 10 instances. Interestingly, 2 out of the 3 un-
solved instances even have a convex lower-level problem and could thus be solved with
specialized methods such as, e.g., [29] that explicitly exploit this property.

5. Application to Gas Network Optimization

In this section, we use Algorithm 1 to solve stationary gas network optimization prob-
lems. We start by modeling the gas network and state an implicit nonlinear pressure law
function for gas flow in pipes. We cannot state this function explicitly but it is possible
to evaluate it rather cheaply. Then, we analyze its derivatives to derive suitable Lipschitz
constants. Finally, numerical results on test instances show the successful application of
our method.

5.1. Modeling. We model the gas network as a directed and weakly connected
graph (V,A), where the arcs A are composed of pipes Api, short pipes Asp, valves Ava,
compressor stations Acs, and control valves Acv, i.e.,

A = Api ∪ Asp ∪ Ava ∪ Acs ∪ Acv.

The two main variables that describe the state of the gas flowing through the network
are the pressure p and mass flow q. Each node u ∈ V has a bounded pressure variable
pu ∈ [

¯
pu, p̄u] and a given mass flow qu that is supplied to or withdrawn from the network.

A node u ∈ V is called an entry node if qu > 0, an exit node if qu < 0, and an inner node
if qu = 0. In addition, each arc a ∈ A has a variable qa ∈ [

¯
qa, q̄a] that models the mass

flow in the arc.
The balance equation

qu +
∑

a∈δin(u)

qa =
∑

a∈δout(u)

qa for all u ∈ V (16)

ensures that no gas is gained or lost. Here, δin(u) and δout(u) denote the sets of in- and
outgoing arcs of node u.

A short pipe a = (u, v) ∈ Asp directly connects its nodes u and v. Therefore, the
related pressure values coincide:

pu = pv for all a = (u, v) ∈ Asp. (17)

A valve a = (u, v) ∈ Ava is either open or closed. If it is open, it is modeled as a
short pipe. If it is closed, the mass flow qa has to be zero and the related pressures are
decoupled but the corresponding pressure difference between the nodes u and v cannot
exceed a given value ∆p̄a. This can be modeled by introducing a binary variable oa that
indicates if the valve a is open (oa = 1) or closed (oa = 0). The valve model then reads

qa ≥
¯
qaoa for all a ∈ Ava, (18a)

qa ≤ q̄aoa for all a ∈ Ava, (18b)

pu − pv ≤ ∆p̄a(1 − oa) for all a = (u, v) ∈ Ava, (18c)

pv − pu ≤ ∆p̄a(1 − oa) for all a = (u, v) ∈ Ava. (18d)
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Compressor stations a ∈ Acs have a fixed flow direction, i.e.,
¯
qa ≥ 0 holds, and can

increase the pressure of the gas. We model this pressure increase by introducing the
variable ∆pa ∈ [0,∆p̄a]. Then, the compressor station model is given by

pv = pu +∆pa for all a = (u, v) ∈ Acs. (19)

Note that this model is a significant simplification of how compressor stations in real gas
networks operate. More complicated and realistic models can be found in, e.g., [38, 42].

Control valves a ∈ Acv are modeled similar to compressor stations but decrease the
gas pressure instead of increasing it. We again have

¯
qa ≥ 0 and

pv = pu −∆pa for all a = (u, v) ∈ Acv (20)

with ∆pa ∈ [0,∆p̄a].
Until now, we have modeled all gas network components in a (mixed-integer) linear

way. The only components that are still missing are pipes a ∈ Api. We will describe the
pressure loss in a pipe in dependence of the inflow pressure and the mass flow using a
nonlinear and Lipschitz continuous function

pv = pv,a(pu, qa) for all a = (u, v) ∈ Api, (21)

which we will analyze in the next section.
The goal is to minimize the overall activity of the compressor stations. Therefore, the

full stationary gas network optimization problem is given by

min
∑

a∈Acs

∆pa

s.t. mass balance (16),

short pipe model (17),

valve model (18),

compressor station model (19),

control valve model (20),

pipe model (21),

pu ∈ [
¯
pu, p̄u] for all u ∈ V,

qa ∈ [
¯
qa, q̄a] for all a ∈ A,

∆pa ∈ [0,∆p̄a] for all a ∈ Acs ∪Acv,

oa ∈ {0, 1} for all a ∈ Ava.

This model has the form of Problem (1). The pipe equations (21) constitute the Lipschitz
nonlinearities (1c) while the other constraints fit (1b) as they are linear. Hence, we can
use Algorithm 1 to solve it.

5.2. Lipschitz Continuity of the Gas Flow Equation. In this section, we derive
and analyze the nonlinear pipe model (21). For the sake of readability, we henceforth
omit the subscript a that indicates the pipe a ∈ Api.

Gas flow along a pipe can be modeled by the stationary momentum equation. This
ordinary differential equation (ODE) reads

∂x

(

p+
χ2

ρ

)

= −1

2
θ
χ|χ|
ρ

, χ = ρv, θ =
λ

D

where p, v, χ, and ρ model the pressure, velocity, mass flux, and density of the gas
and λ as well as D denote the pipe’s friction coefficient and the diameter of the pipe;
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see, e.g., [18]. The relation between the mass flow q and mass flux χ is given by q = Aχ
where A = πD2/4 is the cross-sectional area of the pipe.

The pressure p and density ρ are coupled by the equation of state

p = RsTzρ (22)

for real gas, where Rs denotes the specific gas constant. The compressibility factor z can
be computed by the so-called AGA formula

z = 1 + αp, α = 0.257
1

pc
− 0.533

Tc

pcT
< 0

with pseudocritical pressure pc, pseudocritical temperature Tc, and temperature T that
we assume to be constant; see, e.g., [34]. We only consider a positive compressibility
factor, which is equivalent to

p <
1

|α| . (23)

We further introduce the speed of sound c which is defined via

1

c2
=

∂ρ

∂p

and the squared mach number

η =
v2

c2
.

Lemma 5.1. It holds

η = RsT
χ2

p2
.

Proof. We solve the equation of state (22) for ρ and obtain

ρ =
p

RsTz
.

We can use this and the definition of the speed of sound to get

η = v2
1

c2
=

(

χ

ρ

)2
∂ρ

∂p
=

(

χRsTz

p

)2
RsTz − pRsTα

(RsTz)2

=

(

χRsTz

p

)2
1

RsTz2
= RsT

χ2

p2
. �

We assume that the velocity of the gas is subsonic, i.e., η < 1 holds, as it is the case
for real-world gas networks. This is equivalent to

p > |χ|
√

RsT . (24)

In what follows, we only consider pressures within the interval (|χ|√RsT , 1/|α|). There-
fore, we have

p2 − χ2RsT > 0 and 1 + αp > 0,

which we will use many times throughout this section.
For a pipe (u, v) with length L and pressure pu at node u, the pressure function reads

p(x, pu, χ) = F−1

(

F (pu)−
1

2
RsTχ|χ|θx

)

, (25a)

F (p) =
1

α
p+

(

χ2RsT −
1

α2

)

ln(|1 + αp|)− χ2RsT ln(p), (25b)

for x ∈ [0, L]; see [18, 19]. From [19], we further know the following properties of F .
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Lemma 5.2. The function F as defined in (25b) is differentiable for p ∈ (|χ|√RsT , 1/|α|)
with

F ′(p) =
p2 − χ2RsT

p(1 + αp)
> 0. (26)

The second derivative fulfills

F ′′(p) =
p2 + χ2RsT (1 + 2αp)

p2(1 + αp)2
> 0.

The property in (26) implies that F is strictly increasing. Therefore, the inverse
in (25a) is well-defined. To evaluate the pressure function p in (25a), the equation

F (p) = F (pu)−
1

2
RsTχ|χ|θx (27)

needs to be solved. This can be done numerically using Newton’s method since F is
strictly increasing and convex; see [19]. In the same way, (27) can be solved for pu if p
and χ are given.

From [19], we also use the following result for the pressure function p(x, pu, χ).

Lemma 5.3. The function p as defined in (25a) is differentiable for p ∈ (|χ|√RsT , 1/|α|)
with

∂p

∂pu
(x, pu, χ) =

F ′(pu)

F ′(p(x, pu, χ))
> 0, (28)

∂p

∂χ
(x, pu, χ) =

2χRsT ln
(

(1+αpu)p(x,pu,χ)
(1+αp(x,pu,χ))pu

)

−RsT |χ|θx
F ′(p(x, pu, χ))

{

= 0, for χ = 0,

< 0, for χ 6= 0,
(29)

and

sign

(

∂p

∂x
(x, pu, χ)

)

= − sign(χ). (30)

The sign condition in (30) implies

pu > p(x, pu, χ) if χ > 0,

pu < p(x, pu, χ) if χ < 0,

pu = p(x, pu, χ) if χ = 0

for x ∈ (0, L]. This can be written as

sign(χ) = sign(pu − p(x, pu, χ)).

We are interested in the pressure at the end of the pipe, i.e., for x = L, and need to
find a Lipschitz constant for

pv = pv(pu, χ) := p(L, pu, χ).

To this end, we make the following assumption.

Assumption 2. We assume that the variables χ and pu of each pipe (u, v) are bounded
by

χ ∈ [
¯
χ, χ̄] = [

¯
q/A, q̄/A], pu ∈ [

¯
pu, p̄u] ⊂

(

|χ|
√

RsT ,
1

|α|

)

with

pv(pu, χ) ∈
(

|χ|
√

RsT ,
1

|α|

)

for all (pu, χ) ∈ F := [
¯
pu, p̄u]× [

¯
χ, χ̄].

The following lemma guarantees the Lipschitz continuity of pv(pu, χ) on F .
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Lemma 5.4. Let f : F → R be a partially differentiable function on a compact and
convex subset F ⊂ R

d with d ∈ N. Then, f is Lipschitz continuous on F with Lipschitz
constant L = 1 w.r.t. the weighted 1-norm

‖x̃‖w :=

d
∑

i=1

|x̃i|wi (31)

with positive weights w ∈ R
d and wi ≥ maxx∈F |∂xi

f(x)| for all i ∈ [d].

Proof. Let x̃, ỹ ∈ F . We define the auxiliary function g : [0, 1] → R as g(λ) := f(λx̃ +
(1− λ)ỹ). Now, we use the fundamental theorem of calculus to prove the claim:

|f(x̃)− f(ỹ)| = |g(1)− g(0)|

=

∣

∣

∣

∣

∫ 1

0

g′(λ) dλ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

(x̃− ỹ)⊤∇f(λx̃+ (1− λ)ỹ) dλ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ 1

0

d
∑

i=1

(x̃i − ỹi)∂xi
f(λx̃+ (1− λ)ỹ) dλ

∣

∣

∣

∣

∣

≤
∫ 1

0

d
∑

i=1

|(x̃i − ỹi)∂xi
f(λx̃+ (1 − λ)ỹ)| dλ

≤
∫ 1

0

d
∑

i=1

|x̃i − ỹi|max
x∈F
|∂xi

f(x)| dλ

≤ ‖x̃i − ỹi‖w . �

Using this weighted 1-norm allows to get tighter bounds in (5) compared to the usual 1-
norm. To actually compute this weighted norm one could solve maxx∈F |∂xi

f(x)|, which
is an NLP for each i ∈ [d]. In the case of Algorithm 1, the set F will always be a box.
For the function pv(pu, χ), we can give the optimal solution or at least a suitable upper
bound of these NLPs by analyzing second-order derivatives.

From [18] we know that the second derivative w.r.t. pu of p is given by

∂2p

∂p2u
=

(p2u +RsTχ
2(1 + 2αpu))(p

2 −RsTχ
2)2

F ′(p)p2u(1 + αpu)2(p2 − χ2RsT )2

− (p2 +RsTχ
2(1 + 2αp))(p2u −RsTχ

2)2

F ′(p)p2u(1 + αpu)2(p2 − χ2RsT )2
.

(32)

The sign of this derivative is given by the following lemma.

Lemma 5.5. It holds

sign

(

∂2p

∂p2u

)

= − sign(χ)

for p ∈ (|χ|√RsT , 1/|α|) and x ∈ (0, L].

Proof. Because of (23), (24), and (26), the denominator in (32) is positive. Thus, only
the numerator

(p2u +RsTχ
2(1 + 2αpu))(p

2 −RsTχ
2)2 − (p2 +RsTχ

2(1 + 2αp))(p2u −RsTχ
2)2 (33)



22 J. GRÜBEL, R. KRUG, M. SCHMIDT, W. WOLLNER

determines the sign of ∂2p
∂p2

u
. We note that (p2u + RsTχ

2(1 + 2αpu)) as well as (p2 +

RsTχ
2(1 + 2αp)) are positive:

p2u +RsTχ
2(1 + 2αpu) = (p2u −RsTχ

2) + 2RsTχ
2(1 + αpu) > 0, (34a)

p2 +RsTχ
2(1 + 2αp) = (p2 −RsTχ

2) + 2RsTχ
2(1 + αp) > 0. (34b)

It follows that both the first and the second term in (33) are positive. We rewrite them
as

(p2u +RsTχ
2(1 + 2αpu))(p

2 −RsTχ
2)2 = p2up

4

(

1 +RsTχ
2 1 + 2αpu

p2u

)

(1− η)
2
,

(p2 +RsTχ
2(1 + 2αp))(p2u −RsTχ

2)2 = p4up
2

(

1 +RsTχ
2 1 + 2αp

p2

)

(1− ηu)
2

using the squared mach numbers

η = RsT
χ2

p2
, ηu = RsT

χ2

p2u
.

Now, if the sign of χ is given, all terms are easily comparable except for

1 +RsTχ
2 1 + 2αpu

p2u
and 1 +RsTχ

2 1 + 2αp

p2
.

We take the derivative w.r.t. the pressure and get

∂

∂p

(

1 +RsTχ
2 1 + 2αp

p2

)

= RsTχ
2 ∂

∂p

(

1 + 2αp

p2

)

= RsTχ
2−2p− 2αp2

p4

= −2RsTχ
2 p(1 + αp)

p4
< 0.

We can now determine the sign of ∂2p
∂p2

u
in dependence of χ. If χ = 0, then p = pu and,

therefore,
∂2p

∂p2u
= 0

holds. If χ > 0, then pu > p and η > ηu. We thus have

∂2p

∂p2u
< 0.

If χ < 0, we analogously get
∂2p

∂p2u
> 0. �

Next, we analyze the mixed second-order derivative of p.

Lemma 5.6. It holds
∂2p

∂χ∂pu

{

= 0, for χ = 0,

> 0, for χ 6= 0

for p ∈ (|χ|√RsT , 1/|α|) and x ∈ (0, L].

Proof. It holds

∂2p

∂χ∂pu
=

∂

∂χ

(

F ′(pu)

F ′(p)

)

=
∂

∂χ

(

(p2u − χ2RsT )p(1 + αp)

(p2 − χ2RsT )pu(1 + αpu)

)
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=

(

−2χRsTp(1 + αp) + (p2u − χ2RsT )
(

(1 + αp) ∂p
∂χ

+ pα ∂p
∂χ

))

(p2 − χ2RsT )pu(1 + αpu)

(p2 − χ2RsT )2p2u(1 + αpu)2

−
(p2u − χ2RsT )p(1 + αp)

(

2p ∂p
∂χ
− 2χRsT

)

pu(1 + αpu)

(p2 − χ2RsT )2p2u(1 + αpu)2

=

(

−2χRsTp(1 + αp) + (p2u − χ2RsT )(1 + 2αp) ∂p
∂χ

)

(p2 − χ2RsT )

(p2 − χ2RsT )2pu(1 + αpu)

−
2(p2u − χ2RsT )p

2(1 + αp) ∂p
∂χ
− 2χRsT (p

2
u − χ2RsT )p(1 + αp)

(p2 − χ2RsT )2pu(1 + αpu)

=
2χRsTp(1 + αp)

(

(p2u − χ2RsT )− (p2 − χ2RsT )
)

(p2 − χ2RsT )2pu(1 + αpu)

+
(p2u − χ2RsT )

(

(1 + 2αp)(p2 − χ2RsT )− 2p2(1 + αp)
)

∂p
∂χ

(p2 − χ2RsT )2pu(1 + αpu)

=
2χRsTp(1 + αp)(p2u − p2)− (p2u − χ2RsT )(p

2 + χ2RsT (1 + 2αp)) ∂p
∂χ

(p2 − χ2RsT )2pu(1 + αpu)
.

We note that (p2 + χ2RsT (1 + 2αp)) > 0 holds because of (34b). Now, if χ = 0, then

pu = p and ∂p
∂χ

= 0 holds. It follows

∂2p

∂χ∂pu
= 0.

If χ 6= 0, then χ(p2u − p2) > 0 as well as ∂p
∂χ

< 0 holds and we get

∂2p

∂χ∂pu
> 0. �

From ∂p
∂χ

= 0 for χ = 0 and by using Schwarz’s theorem for χ 6= 0, it follows

∂2p

∂pu∂χ
=

∂2p

∂χ∂pu

{

= 0, for χ = 0,

> 0, for χ 6= 0.
(35)

For the second-order derivative w.r.t. χ of p, we can only give the sign for positive
mass flux χ.

Lemma 5.7. It holds

∂2p

∂χ2
< 0

for p ∈ (|χ|√RsT , 1/|α|), x ∈ (0, L], and χ > 0.

Proof. We introduce the auxiliary function

h := h(x, pu, χ) := RsT ln

(

(1 + αp)pu
(1 + αpu)p

)

+
1

2
RsT sign(χ)θx (36)

to rewrite the derivative of p w.r.t. χ as

∂p

∂χ
=
−2χhp(1 + αp)

p2 − χ2RsT
.
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It holds
sign(h) = sign(pu − p) = sign(χ).

We can take the derivative of h w.r.t. χ for χ 6= 0 and get

∂h

∂χ
(x, pu, χ) = RsT

(1 + αpu)p

(1 + αp)pu

αpu
∂p
∂χ

(1 + αpu)p− (1 + αp)pu(1 + αpu)
∂p
∂χ

(1 + αpu)2p2

=
−RsT

(1 + αp)p

∂p

∂χ
=

2χRsTh(x, pu, χ)

p2 − χ2RsT
> 0.

Now, we can take the second derivative of p w.r.t. χ and get

∂2p

∂χ2
=

∂

∂χ

(−2χhp(1 + αp)

p2 − χ2RsT

)

=
−2

(

hp(1 + αp) + χp(1 + αp) ∂h
∂χ

+ χh(1 + 2αp) ∂p
∂χ

)

(p2 − χ2RsT )

(p2 − χ2RsT )2

+
2χhp(1 + αp)(2p ∂p

∂χ
− 2χRsT )

(p2 − χ2RsT )2

=
−2h

((

p(1 + αp) + χ(1 + 2αp) ∂p
∂χ

)

(p2 − χ2RsT )− χp(1 + αp)(2p ∂p
∂χ
− 2χRsT )

)

(p2 − χ2RsT )2

−
2χp(1 + αp) ∂h

∂χ
(p2 − χ2RsT )

(p2 − χ2RsT )2

=
−2h

(

p(1 + αp)(p2 + χ2RsT )− χ(p2 + χ2RsT (1 + 2αp)) ∂p
∂χ

)

(p2 − χ2RsT )2

−
2χp(1 + αp) ∂h

∂χ

p2 − χ2RsT
.

It holds sign(h) = sign(χ) and we have (p2 +χ2RsT (1+ 2αp)) > 0 because of (34b). For

χ > 0, we get ∂p
∂χ

< 0 and ∂h
∂χ

> 0. The claim then follows. �

To compensate the fact that the last result only holds for χ > 0, we estimate the value
of ∂p

∂χ
for χ < 0 with values for χ > 0.

Lemma 5.8. It holds
∂p

∂χ
(x, pu, χ) >

∂p

∂χ
(x, p(x, pu, χ),−χ)

for p ∈ (|χ|√RsT , 1/|α|), x ∈ (0, L], and χ < 0.

Proof. Equation (27), i.e.,

F (p) = F (pu)−
1

2
RsTχ|χ|θx,

is equivalent to

F (pu) = F (p)− 1

2
RsT (−χ)|−χ|θx.

Therefore, if (pu, χ, p) fulfills (27), then (p,−χ, pu) fulfills (27) as well. This means, we
can write the pressure pu as a function of p and χ:

pu(x, p, χ) = p(x, p,−χ).
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Now, we have

∂p

∂χ
(x, pu, χ) =

2χRsT ln
(

(1+αpu)p
(1+αp)pu

)

−RsT |χ|θx
F ′(p)

=
2(−χ)RsT ln

(

(1+αp)pu

(1+αpu)p

)

−RsT |−χ|θx
F ′(p)

=
F ′(pu)

F ′(p)

∂pu
∂χ

(x, p,−χ)

>
∂pu
∂χ

(x, p,−χ)

because pu < p holds for χ < 0, F ′ is strictly increasing in p, and ∂pu

∂χ
(x, p,−χ) < 0 for

χ 6= 0. �

Now, for ∂p
∂χ

(x, p(x, pu, χ),−χ), we can determine the sign of its derivative w.r.t. χ for
χ < 0.

Lemma 5.9. It holds
∂2p

∂χ2
(x, p(x, pu, χ),−χ) > 0

for p ∈ (|χ|√RsT , 1/|α|), x ∈ (0, L], and χ < 0.

Proof. We know that
pu = p(x, p(x, pu, χ),−χ)

holds. Therefore, we can write

∂p

∂χ
(x, p(x, pu, χ),−χ) =

2(−χ)RsT ln
(

(1+αp(x,pu,χ))pu

(1+αpu)p(x,pu,χ)

)

−RsT |−χ|θx
F ′(pu)

=
−2χhpu(1 + αpu)

p2u − χ2RsT

by using the definition (36) of h. Then, the second-order derivative is given by

∂2p

∂χ2
(x, p(x, pu, χ),−χ) = pu(1 + αpu)

(

−2h− 2χ ∂h
∂χ

)

(p2u − χ2RsT )− (4χ2hRsT )

(p2u − χ2RsT )2
.

Because of sign(h) = sign(χ) = −1 and ∂h
∂χ

> 0, the claim follows. �

Now, we gathered all tools that are needed to find the optimal solution or at least a
suitable upper bound for the NLPs maxx∈F |∂pu

pv| and maxx∈F |∂χpv| that are needed
to compute the weighted norm (31) for (5).

Theorem 5.10. If Assumption 2 holds, the derivative ∂pu
pv(pu, χ) > 0 attains its max-

imum on a given box ∅ 6= [p−u , p
+
u ]× [χ−, χ+] ⊆ [

¯
pu, p̄u]× [

¯
χ, χ̄] in (p−u , χ

+) if χ+ ≥ 0, or

in (p+u , χ
+) else.

Proof. The claim is a direct consequence of Lemma 5.5 and Lemma 5.6. �
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Theorem 5.11. Let F = [p−u , p
+
u ]× [χ−, χ+] ⊆ [

¯
pu, p̄u]× [

¯
χ, χ̄] be a given box with F 6= ∅.

If Assumption 2 holds, the derivative ∂χpv(pu, χ) ≤ 0 has the following properties:

min
(pu,χ)∈F∩R×R≥0

∂χpv(pu, χ) = ∂χpv(p
−
u , χ

+) if χ+ ≥ 0,

min
(pu,χ)∈F∩R×R≤0

∂χpv(pu, χ) > ∂χpv(pv(p
−
u , χ

−),−χ−) if χ− < 0.

Proof. The first property is a direct consequence of (35) and Lemma 5.7.
Now, we prove the second property. From (35) it follows that pu = p−u must hold in

the minimum. We know from Lemma 5.8 that

∂χpv(p
−
u , χ) > ∂χpv(pv(p

−
u , χ),−χ)

holds for all χ ∈ [χ−, χ+]∩R≤0. Since we are dealing with a compact set, this also holds
for the minima:

min
χ∈[χ−,χ+]∩R≤0

∂χpv(p
−
u , χ) > min

χ∈[χ−,χ+]∩R≤0

∂χpv(pv(p
−
u , χ),−χ).

Hence, the claim follows from Lemma 5.9. �

Theorem 5.10 and Theorem 5.11 can be used to not only compute the bounds in (5)
for the initial box [

¯
pu, p̄u]× [

¯
χ, χ̄] but also for every new box that is created in Step 15 of

Algorithm 1. This can significantly tighten the bounds in (5) as the iteration proceeds.

5.3. Numerical Results. Now, we apply Algorithm 1 to two test problems from the
GasLib library [43], which contains stationary gas network benchmark instances. To this
end, we implemented our method in Python 3.8.10. The computations were done on
a machine with an Intel(R) Core(TM) i7-8550U CPU with 4 cores, 1.8GHz to 4.0GHz,
and 16GBRAM. The master problems (M(k)) and the subproblems (S(k)) have been
modeled using GAMS 36.2.0 [8]. We used the solver CPLEX 20.1.0.1 [10] to solve the
master problems, which are MIPs, and the solver SNOPT 7.7.7 [17] for the subproblems,
which are NLPs.

To improve the performance of our method, we detect boxes [p−u , p
+
u ]× [χ−, χ+] in X k

i

that lie outside the feasible set of a pipe. From (28) and (29) we know that this is the
case if χ− ≥ 0 and pv(p

+
u , χ

−) <
¯
pv holds or if χ+ ≤ 0 and pv(p

−
u , χ

+) > p̄v holds.
Additionally, we can fix the flow in pipes that are not part of a cycle. This allows us
to reduce the dimension of the corresponding nonlinearities by one. To get well-scaled
problems, we model all pressure values in bar instead of Pa and exclusively use mass flow
values (in kg s−1) instead of mass flux values. As a result, we have to scale all values of
∂χpv(pu, χ) that are used to compute the bounds in (5) by a factor of 10−5/A.

The first instance we solve is GasLib-11, which is shown in Figure 3. It contains 11
nodes including 3 entries and 3 exits, 8 pipes, 2 compressor stations, and a single valve.
Because the network has a cycle, not all flows on all arcs are known a priori.

The second instance we solve is GasLib-24; see Figure 4. It consists of 24 nodes
including 3 entries and 5 exits, 19 pipes, 3 compressor stations, a single control valve, a
single one short pipe, and a single resistor, which we replace by a short pipe. There are
two cycles in the network.

For both instances we tested the values 0.125, 0.25, 0.375, and 0.5 for the parameter λ.
We chose the value ε = 0.1 (in bar) for the termination criterion. The resulting runtimes
and numbers of iterations are listed in Table 4. In both cases, λ = 0.25 and λ = 0.375
yield better results than λ = 0.125 or λ = 0.5. For λ = 0.125 this can be explained by
the fact that the boxes do not shrink fast enough when split because the splitting point
can be quite close to the edge of its box. Choosing λ = 0.5, on the other hand, removes
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Figure 3. Schematic representation of GasLib-11.

Figure 4. Schematic representation of GasLib-24.

Table 4. The runtimes and numbers of iterations of Algorithm 1 for
different parameters λ. If no overall time is given, the time limit of
1000 s was reached before an ε-feasible solution could be found.

Instance λ # iterations Mean iteration time (s) Overall time (s)

GasLib-11 0.125 182 1.37 248.76
GasLib-11 0.25 89 0.78 69.45
GasLib-11 0.375 74 0.64 47.41
GasLib-11 0.5 123 0.85 104.24

GasLib-24 0.125 218 4.60 −
GasLib-24 0.25 95 1.67 158.43
GasLib-24 0.375 198 4.53 896.17
GasLib-24 0.5 216 4.64 −
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Figure 5. The maximal error maxi∈[p] |fi(xI(i))− xr(i)| in each itera-
tion for GasLib-11 with λ = 0.375 (left) and GasLib-24 with λ = 0.25
(right) on a logarithmic scale.

the possibility for the splitting points to be closer to the master problem solution and
therefore potentially to the optimal solution of Problem (1).

For GasLib-11 the best result was achieved for λ = 0.375 for which an ε-feasible solution
was found in 47.41 s. The method terminated after 74 iterations with a mean iteration
time of 0.64 s. The mean time to solve the master problem was 0.35 s and the mean time
to solve the subproblems was 0.14 s. The remaining 0.16 s were used to (re-)build the
model in each iteration.

For GasLib-24 the best result was achieved for λ = 0.25 for which an ε-feasible solution
was found in 158.43 s. With 95 iterations, the mean iteration time was 1.67 s. This mean
includes 1.05 s to solve the master problem, 0.23 s to solve the subproblems, and 0.39 s
to (re-)build the model in each iteration.

Figure 5 shows the progress of the maximal error over the course of the iterations for
the best-case of both test instances. One can see that it falls rapidly in the first iterations.
After that, it fluctuates strongly with only a slight downward trend until the threshold
maxi∈[p] |fi(xI(i))− xr(i)| ≤ ε is reached. This behavior is typical as the approximation
progress from splitting a box in Step 15 of Algorithm 1 is reduced as the boxes get smaller.
The fluctuations can be explained by the master problem solution switching to a bigger
box jki ∈ Jk

i after the previous box has been refined a number of times in Step 15.

6. Conclusion

In this paper we developed a successive linear relaxation method for solving MINLPs
with nonlinearities that are not given in closed form. Instead, we only assume that these
multivariate nonlinearities can be evaluated and that we know their global Lipschitz
constants. We illustrate the flexibility of this class of models and of our method by show-
ing that it can be applied to bilevel optimization models with nonlinear and nonconvex
lower-level problems as well as to nonconvex MINLPs for gas transport problems that
are constrained by differential equations. Moreover, we proved finite termination of the
method and derived a worst-case iteration bound.

Finally, let us sketch two important topics for future research that are out of scope
of this paper. First, one can weaken the assumptions made in this paper as it is done
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in [44]. In particular, the assumption of exact function evaluations is rather strong in
some applications such as, e.g., in the case of PDE constraints. Second, it is obvious (and
also not expected) that the proposed method is not competitive with MINLP solution
methods that explicitly use the structural properties of the nonlinearities that are given
in closed form. However, there are many possible ways of improving the general method
proposed in this paper. For instance, the incorporation of presolving and dimension-
reduction techniques would help a lot to improve the performance of the method.
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