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Abstract. This paper studies the benefits of pressure-robust discretizations in the scope
of optimal control of incompressible flows. Gradient forces that may appear in the data
can have a negative impact on the accuracy of state and control and can only be cor-
rectly balanced if their L2-orthogonality onto discretely divergence-free test functions is
restored. Perfectly orthogonal divergence-free discretizations or divergence-free reconstruc-
tions of these test functions do the trick and lead to much better analytic a priori estimates
that are also validated in numerical examples.
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1. Introduction

The stationary Stokes equations seek an unknown velocity u P V and pressure p P Q such
that

νp∇u,∇ϕq ` pp,div ϕq “ pf , ϕq @ϕ P V

pdiv u, ψq “ 0 @ψ P Q

with given data ν ą 0, f P L2pΩq on a domain Ω Ă Rn with n ď 3, and the standard function
spaces V :“ H1

0pΩ;Rdq, and Q :“ L2
0pΩq. A standard discretization by inf-sup stable finite

element spaces Vh ˆ Qh Ă V ˆ Q yields solutions puh, phq satisfying a best approximation
estimate, see, e.g., [10, Section III.1.2], or [3, Section VI.2], of the form

}u´ uh}
2
V ď

1

β2
h

inf
ϕhPVh

}u´ ϕh}
2
V ` C

2
P where CP :“

1

ν
inf

ψhPQh

}p´ ψh}Q

with the discrete inf-sup constant βh. The estimate indicates, that the error in the velocity
can be polluted by a pressure which is hard to approximate. This is caused by a violation of
the L2-orthogonality between divergence-free functions and irrotational forces. To remove
this dependency, so called pressure-robust discretizations can be used, either perfectly ortho-
gonal divergence-free methods [26, 28, 7, 14, 24, 16] or modifications of classical methods via a
reconstruction operator Π that repairs the orthogonality where needed [19, 23, 21, 18, 16, 17].
With these methods estimates of the form

}u´ uh}
2
V ď

1

β2
h

inf
ϕhPVh

}u´ ϕh}
2
V ` C

2
Π where CΠ :“ Ophkq}∆u}Hk´1pΩq

are possible where the reconstruction causes a consistency error CΠ of optimal convergence
order k (provided that ∆u P Hk´1) that is pressure-independent. Quasi-optimal estimates
in case ∆u R L2pΩq can be found in [22]. Divergence-free H1-conforming discretizations even
come without any consistency error, i.e. CΠ “ 0, but usually require higher-order polynomial
or non-standard ansatz spaces or specially refined meshes to ensure inf-sup stability. Also
note, that pressure-robust methods may have the potential to increase the accuracy beyond
the presence of gradient errors in the data f , but also in presence of complicated gradient
forces generated by the material derivative in transient Navier-Stokes flows [9, 1].
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This paper aims to investigate possible benefits of using pressure-robust discretizations
in the context of the optimization of incompressible flows, where a canonical optimization
problem is given by

(P)

min
pq,u,pqPQˆVˆQ

1

2
}u´ ud}2L2pΩq `

α

2
}q}2L2pΩq

s.t.

#

νp∇u,∇ϕq ` pp,div ϕq “ pf ` q, ϕq @ϕ P V

pdiv u, ψq “ 0 @ψ P Q

with the control space Q “ L2pΩ;Rnq.
The discretization of (P) and similar control problems subject to an equation for an

incompressible flow has been discussed extensively in the literature. [25] showed optimal
rates for a mixed finite element method for the above stationary Stokes control problem.
Similar results on optimal convergence rates for the control of stationary and nonstationary
Navier-Stokes control have been provided in [12] and [6], respectively. For least squares finite
element approximations of the respective optimality system [2, 4] showed best approximation
results, and the same was done in [5] for a standard Galerkin approximation of nonstationary
Stokes control. For the related Dirichlet control problem error estimates have been obtained
by HDG methods in [11] and for Navier-Stokes control in [13]

All of the above results contain velocity errors depending on the pressure approximations.
This implies that all the proposed methods will have spurious error contributions in the
velocity induced by complicated pressures. In fact, irrotational forces can not only appear
in the right-hand side f , but also in the data ud. According to its Helmholtz–Hodge decom-
position ud “ ∇ψ ` curlφ only the divergence-free part curlφ can be optimized, while the
irrotational part ∇ψ cannot; but will confuse non-pressure-robust discretizations. Therefore,
this paper discusses a pressure robust discretization of (P). A naive approach to pressure
robustness in the control problem would be the use of a pressure robust discretization for
the PDE constraint which we will detail in Section 3.3.1. However, in view of irrotational
forces in the data ud, this is insufficient and hence, Section 3.3.2, provides a fully pressure
robust approximation for (P).

The rest of the paper is structured as follows. Section 2 introduces the canonical Stokes
optimization problem studied in this paper. Section 3 discusses the classical discretization
and its a priori error estimate and suggests a novel pressure-robust discretization. Section 4
proves an a priori estimate for the fully pressure-robust variant that has qualitative improve-
ments over the classical scheme. Section 5 compares the three schemes in two numerical
examples to illustrate the theoretical findings.

2. Canonical Stokes optimization problem

Consider the optimal control problem: for given data f P L2pΩq, ud P L2pΩq, seek state
and control pu,qq P V0 ˆ Q, where V0 “ tϕ P V | div ϕ “ 0u are the divergence-free
functions, solving

min
pu,qqPV0ˆQ

1

2
}u´ ud}2L2pΩq `

α

2
}q}2L2pΩq

s.t. pν∇u,∇ϕq “ pf ` q, ϕq @ϕ P V0.

Note, that this problem is equivalent to (P) by introducing a pressure p P Q to allow working
with test functions from V rather than V0.
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Since this is a linear quadratic optimization problem, standard theory, e.g., [27], gives the
necessary and sufficient optimality conditions with an adjoint state w P V0 satisfying:

0 “ νp∇u,∇ϕq ´ pq` f , ϕq @ϕ P V0,

0 “ νp∇ϕ,∇wq ´ pu´ ud, ϕq @ϕ P V0,

0 “ pαq`w, ϕq @ϕ P Q.

The third equation yields an algebraic relation

q “
´1

α
w

between the adjoint w and the control which could be used to eliminate the control variable
from the problem, by the so called variational discretization approach [15]. However, [8]
suggests that rather than taking this simple substitution a more convenient choice for the
following analysis is the consideration of the rescaled adjoint

z “
1
?
α
w, and hence q “

´1
?
α
z.

From this it is easy to see that an optimal solution pq,uq P Q ˆV0 of (P) is equivalently
given by a solution pu, zq P V0 ˆV0 of

(2.1)
νp∇u,∇ϕq ` α´1{2pz, ϕq “ pf , ϕq @ϕ P V0,

νp∇ϕ,∇zq ´ α´1{2pu, ϕq “ ´α´1{2pud, ϕq @ϕ P V0.

Adding the pressures or Lagrange multipliers for the divergence constraints, it is also equi-
valent to seek pu, z, p, λq P V ˆV ˆQˆQ

(2.2)

νp∇u,∇ϕq ` pdiv ϕ, pq ` α´1{2pz, ϕq “ pf , ϕq @ϕ P V,

pdiv u, ψq “ 0 @ψ P Q,

νp∇ϕ,∇zq ` pdiv ϕ, λq ´ α´1{2pu, ϕq “ ´α´1{2pud, ϕq @ϕ P V,

pdiv z, ψq “ 0 @ψ P Q.

3. Discretization and a priori estimates

3.1. Preliminaries. For the discretization the space V0 is replaced by some discretely
divergence-free space

V0
h :“ tϕh P Vh : pdiv ϕh, ψhq “ 0 for all ψh P Qhu

for some inf-sup stable pair Vh ˆ Qh. The analysis involves the consistency error of the
possibly relaxed divergence constraint in form of the dual norm

}∇ψ}2
pV0

hq
‹ :“ sup

ϕhPV
0
h

ż

ψ div pϕhq dx{}∇ϕh}.(3.1)

For exactly divergence-free schemes this norm is always zero, and otherwise can be bounded
by the pressure best-approximation error }ψ ´ πQh

ψ}.
Below we discuss a straight-forward classical discretization and some modified pressure-

robust variant that replaces these errors by something qualitatively better.
It is studied how the consistency errors from the lack of pressure-robustness or their

pressure-robust alternatives influence the a priori estimates for the natural energy norm
induced by the PDE rather than the cost functional, see also [8],

|||pu, zq|||2 :“ }∇u}2L2pΩq ` }∇z}2L2pΩq.
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To do so, we estimate the distance of puh, zhq to the Stokes best-approximations pShu,Shzq P
V0
h ˆV0

h , that are defined by

p∇pw ´ Shwq,∇ϕhq “ 0 for all ϕh P V
0
h,(3.2)

and allow for the Pythagoras theorem

(3.3) |||pu´ uh, z´ zhq|||
2 “ |||pu´ Shu, z´ Shzq|||2 ` |||pShu´ uh,Shz´ zhq|||

2.

Due to inf-sup stability with inf-sup constant βh ą 0, the first summand enjoys the best-
approximation property, i.e. for any w P V,

}∇pw ´ Shwq}2L2pΩq “ inf
ϕhPV

0
h

}∇pw ´ ϕhq}2L2pΩq ď
1

βh
inf

ϕhPVh

}∇pw ´ ϕhq}2L2pΩq

and shows convergence rates corresponding to the regularity of u and z and the polynomial
order of Vh. This best-approximation result is only perturbed by the second summand
|||pShu´uh,Shz´zhq|||

2 which therefore is the primal object of interest in the a priori error
analysis below.

Moreover, assuming sufficient regularity of w P tu, zu and H2-regularity of the Stokes-
problem on the domain Ω, the Stokes projection also enjoys the estimate

}w ´ Shw}L2pΩq À h}∇pw ´ Shwq}L2pΩq À hk`1}w}Hk`1(3.4)

which is needed in Theorem 4.1 below and can be shown by the usual Aubin–Nitsche argu-
ment.

3.2. Classical discretization. The classical variational discretization of (2.2) solves the
following discrete problem: seek puh, zh, ph, λhq P Vh ˆVh ˆQh ˆQh such that

(3.5)

νp∇uh,∇ϕhq ` pdiv ϕh, phq “ pf ´ α
´1{2zh, ϕhq @ϕh P Vh,

pdiv uh, ψhq “ 0 @ψh P Qh,

νp∇ϕh,∇zhq ` pdiv ϕh, λhq “ α´1{2puh ´ ud, ϕhq @ϕh P Vh,

pdiv zh, ψhq “ 0 @ψh P Qh.

The error estimates involve the previously defined Stokes projector Sh : V Ñ V0
h and as

stated above only the second summand in (3.3) needs to be discussed.

Lemma 3.1 (A priori error estimate for difference to best-approximation). For the solution
of puh,qhq of (3.5) and the discrete Stokes projectors of the exact solutions pShu,Shqq, it
holds

|||pShu´ uh, Shz´ zhq||| ď
1

ν

´

}∇p}2
pV0

hq
‹ ` }∇λ}2pV0

hq
‹

¯1{2

`
1

α1{2ν

´

}u´ Shu}2 ` }z´ Shz}2
¯1{2

.

where p and λ are the respective pressures of the Stokes problems for u and z. The dual
norms, as defined in (3.1), measure their generated consistency error due to the discrete
divergence.

Remark 3.2. Note that the upper bound

}∇ψ}pV0
hq

‹ ď }ψ ´ πQh
ψ}L2pΩq

together with assumed regularity of p and λ would allow for the usual estimates in terms of
powers of the mesh size. However, the upper bound }∇ψ}pV0

hq
‹ is sharper, and in particular
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vanishes for divergence-free elements (i.e., V0
h Ă V0). In this case only higher order terms

according to (3.4) remain on the right-hand side.

Proof of Lemma 3.1. Using (3.2) and testing the first equation of (2.2) and (3.5) with ϕh “
Shu´ uh P V

0
h reveals

ν}∇pShu´ uhq}
2
L2pΩq

“ νp∇pu´ uhq,∇pShu´ uhqq

“ pf ´ α´1{2z,Shu´ uhq ´ pp,div pShu´ uhqq ´ pf ´ α
´1{2zh,Shu´ uhq

“ ´α´1{2pz´ zh,Shu´ uhq ´ pp,div pShu´ uhqq.

Analogously, one shows that

ν}∇pShz´ zhq}
2
L2pΩq “ α´1{2puh ´ u,Shz´ zhq ´ pλ,div pShz´ zhqq.

Using

pz´ zh, Shu´ uhq “ pShz´ zh, Shu´ uhq ` pz´ Shz, Shu´ uhq

pu´ uh, Shz´ zhq “ pShu´ uh, Shz´ zhq ` pu´ Shu,Shz´ zhq

one obtains

A : “ pz´ zh, Shu´ uhq ´ puh ´ u, Shz´ zhq

“ pz´ Shz,Shu´ uhq ´ pu´ Shu,Shz´ zhq

which can be estimated by

|A| ď
`

}u´ Shu}2 ` }z´ Shz}2
˘1{2

ˆ |||pShu´ uh, Shz´ zhq|||

Analogously, for

B :“ pp,div pShu´ uhqq ` pλ,div pShz´ zhq

one obtains the estimate

|B| ď
´

}∇p}2
pV0

hq
‹ ` }∇λ}2pV0

hq
‹

¯1{2
ˆ |||pShu´ uh,Shz´ zhq|||

The summation of both estimates yields

|||pShu´ uh, Shz´ zhq|||
2 “

´1

ν

´

B ` α´1{2A
¯

ď ν´1

ˆ

´

}∇p}2
pV0

hq
‹ ` }∇λ}2pV0

hq
‹

¯1{2

` α´1{2
´

}u´ Shu}2 ` }z´ Shz}2
¯1{2

˙

ˆ |||pShu´ uh,Shz´ zhq|||.

This concludes the proof. �

3.3. Pressure-robust discretization. In this section, we assume the existence of some
reconstruction operator Π : Vh `V Ñ Wh that maps discretely divergence-free functions
to exactly divergence-free function, i.e., it holds

Π: V0
h ÑWh X tϕ P Hpdiv,Ωq : div ϕ “ 0u.

For the Bernardi–Raugel finite element methods used in the numerical examples one can
use the standard interpolation Π “ IBDM1 into the Brezzi-Douglas-Marini space Wh :“



6 C. MERDON AND W. WOLLNER

BDM1pT q :“ P1pT q XHpdiv,Ωq where P1 denotes the piecewise affine vector-valued poly-
nomials. This operator than has the property

}ϕ´Πϕ}L2pΩq À hm}ϕ}H1`m for m P t1, 2u and ϕ P HmpΩq(3.6)

which can be found in textbooks like [3]. The Friedrichs inequality }ϕ}L2pΩq ď CF }∇ϕ}L2pΩq

then also implies the estimate

}Πϕ}L2pΩq ď }ϕ´Πϕ}L2pΩq ` }ϕ}L2pΩ À ph` CF q}∇ϕ}L2pΩq for any ϕ P V.(3.7)

For higher-order finite elements (k ě 2) the same property for m P t1, . . . , k ` 1u and
additional orthogonality properties are needed such that, for any g P Hk´1pΩq, it holds

pg, ϕ´Πϕq À hk}g}Hk´1}∇ϕ}

to allow for an estimation of the consistency error by

}g ˝ p1´Πq}2
pV0

hq
‹ :“ sup

ϕhPV
0
h

pg, p1´Πqϕhq

}∇ϕh}L2pΩq
À hk}g}Hk´1 .(3.8)

For more details and choices of reconstruction operators for higher order finite element
methods see, e.g., [20, 21, 18].

3.3.1. Partially pressure-robust discretization. In the optimal control setting, a naive ap-
proach to pressure robustness would be the use of a pressure robust discretization of the
Stokes equation in (P), giving the problem

min
pqh,uh,phqPQˆVhˆQh

1

2
}uh ´ ud}2L2pΩq `

α

2
}qh}

2
L2pΩq

s.t.

#

νp∇uh,∇ϕhq ` pph, div ϕhq “ pf ` qh,Πϕhq @ϕh P V,

pdiv uh, ψhq “ 0 @ψh P Qh.

Here following the variational discretization approach of [15] the control qh P Q is only dis-
cretized implicitly by the optimality conditions. In the case at hand the optimality conditions
yield qh “ ´α

´1{2Πzh “ ´α
´1{2Πwh PWh.

Following the same arguments as in Section 2 the solution of this discretized optimization
problem is given equivalently by a solution puh, zh, ph, λhq P Vh ˆVh ˆQh ˆQh of

νp∇uh,∇ϕhq ` pdiv ϕh, phq “ pf ´ α
´1{2Πzh,Πϕhq @ϕh P Vh

pdiv uh, ψhq “ 0 @ψh P Qh

νp∇ϕh,∇zhq ` pdiv ϕh, λhq “ α´1{2puh ´ ud, ϕhq @ϕh P Vh

pdiv zh, ψhq “ 0 @ψh P Qh.

The optimality system shows that we can not expect a real advantage of this partially pres-
sure robust discretization compared to the classical formulation, since the adjoint still suffers
from a lack of pressure robustness and associated consistency errors for hidden gradient fields
in the data. That this is indeed the case is shown in the numerical examples in Section 5.
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3.3.2. Fully pressure-robust discretization.
To obtain a fully pressure-robust method, in addition to the Stokes equation also the cost
functional needs to be modified as follows

min
pqh,uh,phqPQˆVhˆQh

1

2
}Πuh ´ ud}2L2pΩq `

α

2
}qh}

2
L2pΩq

s.t.

#

νp∇uh,∇ϕhq ` pph,div ϕhq “ pf ` qh,Πϕhq @ϕh P Vh,

pdiv uh, ψhq “ 0 @ψh P Qh.

Again, the optimization problem is equivalent to searching for a solution of the reduced
optimality system. Hence, we search puh, zh, ph, λhq P Vh ˆVh ˆQh ˆQh solving

(3.9)

νp∇uh,∇ϕhq ` pdiv ϕh, phq “ pf ´ α
´1{2Πzh,Πϕhq @ϕh P Vh,

pdiv uh, ψhq “ 0 @ψh P Qh,

νp∇ϕh,∇zhq ` pdiv ϕh, λhq “ α´1{2pΠuh ´ ud,Πϕhq @ϕh P Vh,

pdiv zh, ψhq “ 0 @ψh P Qh.

4. Analysis of the fully pressure-robust method

Lemma 4.1 (A priori error estimate). For the solution puh, zhq of (3.9) and the discrete
Stokes projectors pShu,Shzq of the (assumed to be sufficiently smooth) exact solutions, it
holds

|||pShu´ uh, Shz´ zhq||| ď
´

}∆u ˝ p1´Πq}2
V0

h
‹ ` }∆z ˝ p1´Πq}2

V0
h

‹

¯1{2

`
1

να1{2

´

}p1´ΠShqu ˝Π}2
pV0

hq
‹

` }p1´ΠShqz ˝Π}2
pV0

hq
‹

¯1{2
.

The consistency error caused by the reconstruction operators can be estimated under the
assumption of the H2-regularity of the Stokes operator on the given domain and (3.6), (3.8)
for the reconstruction operator, by

}∆w ˝ p1´Πq}2
pV0

hq
‹ :“ sup

ϕhPV
0
h

p∆w, p1´Πqϕhq

}∇ϕh}L2pΩq
À hk}∆w}Hk´1 ,

}p1´ΠShqw ˝Π}2
pV0

hq
‹ :“ sup

ϕhPV
0
h

pp1´ΠShqw,Πϕhq
}∇ϕh}L2pΩq

À hk`1}w}Hk .

Remark 4.2. The second norm compares w with its reconstructed Stokes projection. For
the exactly divergence free Scott–Vogelius element it holds Π “ 1 and hence one obtains the
same estimate as in Lemma 3.1.

Proof of Lemma 4.1. Using (3.2) and testing the first equation of (3.9) with ϕh “ Shu´uh P

V0
h, and using f “ ´ν∆u´∇p` α´1{2z and p∇p,Πϕhq “ 0 reveals

ν}∇pShu´ uhq}
2
L2pΩq “ νp∇pu´ uhq,∇pShu´ uhqq

“ ´ νp∆u,Shu´ uhq ´ pf ´ α
´1{2Πzh,ΠpShu´ uhqq

“ ´ νp∆u, p1´ΠqpShu´ uhqq

´ α´1{2pz´Πzh,ΠpShu´ uhqq.
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Analogously, one obtains

ν}∇pShz´ zhq}
2
L2pΩq “ ´νp∆z, p1´ΠqpShz´ zhqq ` α

´1{2pu´Πuh,ΠpShz´ zhqq.

Observe that

´νp∆u, p1´ΠqpShu´ uhqq ´ νp∆z, p1´ΠqpShz´ zhqq

ď ν}∆u ˝ p1´Πq}V0
h

‹}∇pShu´ uhq}L2pΩq

` ν}∆z ˝ p1´Πq}V0
h

‹}∇pShz´ zhq}L2pΩq

ď ν
´

}∆u ˝ p1´Πq}2
V0

h
‹ ` }∆z ˝ p1´Πq}2

V0
h

‹

¯1{2

ˆ |||pShu´ uh, Shz´ zhq|||.

Similar to the Galerkin case, we have the additional higher order terms (with factor ´α´1{2)

A :“ pu´Πuh,ΠpShz´ zhqq ´ pz´Πzh,ΠpShu´ uhqq.

Again, some manipulations reveal

pz´Πzh,ΠpShu´ uhqq “ pz´ΠShz,ΠpShu´ uhqq ` pΠpShz´ zhq,ΠpShu´ uhqq

pu´Πuh,ΠpShz´ zhqq “ pu´ΠShu,ΠpShz´ zhqq ` pΠpShu´ uhq,ΠpShz´ zhqq

and the subtraction of both lines leads to

|A| ď
´

}p1´ΠShqu ˝Π}2
pV0

hq
‹ ` }p1´ΠShqz ˝Π}2

pV0
hq

‹

¯1{2

ˆ |||pShu´ uh, Shz´ zhq|||.

The combination of these estimates concludes the proof of the first claim and it remains to
show the bounds for the consistency errors. The first bound follows from (3.8) and the second
bound can be estimated as follows. The stability estimate (3.7) and triangle inequalities yield

sup
ϕhPV

0
h

pw ´ΠShw,Πϕhq
}∇ϕh}L2pΩq

À }w ´ΠShw}L2

ď }w ´ Shw}L2 ` }w ´Πw}L2 ` }p1´Πqpw ´ Shwq}L2

À }w ´ Shw}L2 ` }w ´Πw}L2 ` h}∇pw ´ Shwq}L2 .

The claimed estimate now follows from (3.6) and (3.4). �

5. Numerical examples

This section visualizes the theoretical results in two numerical examples that were conducted
with the open source Julia package GradientRobustMultiPhysics.jl.

To distinguish all three schemes, a common formulation is given by

min
pqh,uh,phqPQˆVhˆQh

1

2
}Π1uh ´ ud}2L2pΩq `

α

2
}qh}

2
L2pΩq

s.t.

#

νp∇uh,∇ϕhq ` pph,div ϕhq “ pf ` qh,Π2ϕhq @ϕh P Vh,

pdiv uh, ψhq “ 0 @ψh P Qh,

where the classical scheme employs Π1{Π2 “ id{id, the partially pressure-robust scheme
employs Π1{Π2 “ id{Π and the new fully pressure-robust scheme employs Π1{Π2 “ Π{Π.
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α “ 10´6, ν “ 1 α “ 10´1, ν “ 1

α “ 10´6, ν “ 10´3 α “ 10´1, ν “ 10´3

Figure 5.1. Example 1: Reference solutions for u (larger images) and z
(smaller images) for ν “ 1 (top row) and ν “ 10´3 (bottom row) and α “ 10´6

(left column) and α “ 10´1 (right column), and independent of ε.

5.1. Example 1. This example studies the prescribed polynomial solution

upx, yq “ curlpx4px´ 1q4y4py ´ 1q4q

of the Stokes problem ´ν∆u “ q on the unit square Ω “ p0, 1q2. The solution satisfies
q :“ ´ν∆u P H1

0 pΩq and therefore pq,uq minimizes the objective functional for α “ 0,
f “ 0 and ud :“ u. For α ą 0, the exact minimizer is unknown and a reference solution
is computed on a very fine grid with the second-order divergence-free Scott-Vogelius finite
element method. To study pressure-robustness, we perturb the data with some irrotational
gradient field

udpx, yq :“ upx, yq ` ε∇pcospxq sinpyqq

for different choices of ε ě 0. From the analysis it is clear that any divergence-free scheme
like the Scott-Vogelius element ignores the irrotational part in the data and therefore is
independent of ε. Figure 5.1 shows some reference solutions for fixed ν “ 1 and different
choices of α.

Figures 5.3 shows the convergence history for ν “ 1, where all methods under consideration
perform very similar. Only in the case α “ 10´6 and α “ 10´4 the errors for q of the classical
method and the partially pressure-robust method are worse than the error of the pressure-
robust method. Also the velocity error behaves a bit suboptimal pre-asymptotically in these
cases.

Figure 5.2 shows some discrete solutions of the classical scheme and the fully pressure-
robust scheme with ε “ 10´4 and moderate viscosity ν “ 10´3 and different choices of α.
For smaller α significant errors in u and z can be seen, while for α “ 0.1 only z looks heavily
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α “ 10´1, classical α “ 10´1, fully p-robust

α “ 10´3, classical α “ 10´3, fully p-robust

α “ 10´6, classical α “ 10´6, fully p-robust

Figure 5.2. Example 1: Discrete solutions uh (larger images) and zh (smal-
ler images) for classical (left) and fully pressure-robust (right) Bernardi–
Raugel method for ε “ 10´4, ν “ 10´3 and α “ 10´1, 10´3, 10´6 (from
top to bottom).

distorted in the classical scheme. For the smallest α “ 10´6 also the z of the full robust
scheme looks different than the reference solution, but at least it looks symmetric and the
magnitude is matched. Images for the partially pressure-robust scheme are not presented,
but look very similar to those for the classical one. The observations are also inline with the
convergence histories in Figure 5.4. Here the situation for the classical and also the partially
pressure-robust method is dramatically different. The error in the energy norm even diverges
pre-asymptotically (the effect scales with α´1 and becomes more pronounced for smaller ν.
Only the fully pressure-robust method shows optimal convergence rates in the full range of
tested parameters.
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classical scheme

partially p-robust scheme

fully p-robust scheme

Figure 5.3. Example 1: Convergence histories for the classical (top row),
partially pressure-robust (middle row) and fully pressure-robust (bottom row)
Bernardi–Raugel methods for ε “ 10´4, ν “ 1 and various choices of α. The
first, second and third column depict the total energy error, velocity error,
and the control error, respectively.

5.2. Example 2. Consider a unit square Ω “ p0, 1q2 “ ΩC Y ΩF Y ΩO decomposed into a
control region ΩC “ p0, 2{5qˆp0, 1q, a free region ΩF “ p2{5, 3{5qˆp0, 1q and an observation
region ΩO “ p3{5, 1qˆp0, 1q. The right part of Figure 5.5 shows a coarse triangulation where
these regions are marked with red, green and blue color in the mentioned order.

By straightforward arguments, the optimal control is reformulated into

min
pqh,uh,phqPQˆVhˆQh

1

2
}Π1uh ´ ud}2L2pΩOq

`
α

2
}qh}

2
L2pΩCq

s.t.

#

νp∇uh,∇ϕhq ` pph, div ϕhq “ pf ,Π2ϕhq ` pqh,Π2ϕhqΩC
@ϕh P Vh,

pdiv uh, ψhq “ 0 @ψh P Qh.
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classical scheme

partially p-robust scheme

fully p-robust scheme

Figure 5.4. Example 1: Convergence histories for the classical (top row),
partially pressure-robust (middle row) and fully pressure-robust (bottom row)
Bernardi–Raugel methods for ε “ 10´4, ν “ 10´3 and various choices of α.
The first, second and third column depict the total energy error, velocity
error, and the control error, respectively.

The optimization problem is equivalent to searching for a solution puh, zh, ph, λhq P Vh ˆ

Vh ˆQh ˆQh of

νp∇uh,∇ϕhq ´ pdiv ϕh, phq “ pf ,Π2ϕhq ´ pα
´1{2Π2zh,Π2ϕhqΩC

@ϕh P Vh,

pdiv uh, qhq “ 0 @qh P Qh,

νp∇ϕh,∇zhq ` pdiv ϕh, λhq “ α´1{2pΠ1uh ´ ud,Π1ϕhqΩO
@ϕh P Vh,

pdiv zh, qhq “ 0 @qh P Qh.

This example employs the same data from Example 1, but with a perturbation that really
is orthogonal on divergence-free functions when integrated over ΩO, i.e.

udpx, yq :“ upx, yq ` ε∇psinpx´ 0.6q cospyqq.
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Figure 5.5. Coarsest grids used in Example 1 (left) and Example 2 (right).

Moreover, we prescribe f :“ ´µ∆u such that p0,uq is the minimizer of the objective func-
tional for α “ 0, so this time the control should be close to z “ 0. For α ą 0, the exact
minimizer is once again approximated on a very fine grid with the second-order divergence-
free Scott-Vogelius finite element method.

As in the previous example Figure 5.6 depicts some discrete solutions of the classical
scheme and the fully robust scheme for ν “ 10´3 and different choices of α. The solution
zh of the fully robust method is about two orders of magnitudes closer to z “ 0 than the
classical scheme. This is also supported by the convergence histories in Figure 5.7. For
very small α the errors for the fully robust scheme are also about two order of magnitudes
better than the errors of the classical scheme and also seem to converge faster. This may be
explained by the velocity error uh that is almost independent of α and only gets larger for
very small α. This might be caused by the higher-order term in Lemma 4.1.
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