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Enhanced twisted arrow categories

Fernando Abellán García and Walker H. Stern

Abstract

Given an ∞-bicategory D with underlying ∞-category D, we construct a Cartesian fibra-

tion Tw(D) → D × Dop, which we call the enhanced twisted arrow ∞-category, classifying the

restricted mapping category functor MapD : Dop × D → Dop × D → Cat∞. With the aid of

this new construction, we provide a description of the ∞-category of natural transformations

Nat(F,G) as an end for any functors F and G from an ∞-category to an ∞-bicategory. As an

application of our results, we demonstrate that the definition of weighted colimits presented in

arXiv:1501.02161 satisfies the expected 2-dimensional universal property.
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Introduction

Of the many tools belonging to the study of categories, perhaps the most key is the Yoneda lemma.

The fully faithfulness of the functor

C SetC

x hx : = HomC(−, x)

means, in particularly, that we can view functors f : Cop Set as universal properties, and

thereby uniquely specify an object x by requiring hx ∼= f .

In the higher-categorical realm, the good news is that this result still holds. The (∞, 1)-categorical

Yoneda embedding

Y : C SC

is fully faithful (c.f. e.g. [Lur09, 5.1.3.1]). While this is auspicious for the study of universal properties

as described above, it comes with a significant complication. The standard presentation of the target

category SC (which is also written variously as P(C) or Fun(Cop,S)) is in terms of a model structure

on the category Fun(C[C],Set∆) of simplicially enriched functors.

The model Fun(C[C],Set∆) is extremely useful in relating the underlying ∞-category to other

∞-categories — for example in the proof of the ∞-categorical Yoneda lemma. The problem arises in

that it is often extremely difficult to write down explicit simplicially-enriched functors, and explicit

simplicially-enriched natural transformations between them. When the initial definition of C is as

a quasi-category, it can even be difficult to write down C[C] explicitly.

As in so many parts of higher category theory, the way out of this dilemma is the Grothendieck

construction. We can proceed according to the

Slogan: Cartesian fibrations and maps between them are easier to work with than

enriched functors and natural transformations between them.

From this perspective, if we want to study representable functors and universal properties, we need

first to classify the Yoneda embedding by a fibration.

The twisted arrow category

The canonical solution to this problem is the twisted arrow (∞-)category. In e.g. [Lur11] and [Cis19],

it is shown that for each ∞-category C, there is a right fibration1

Tw(C) C × Cop

which classifies the functor HomC : Cop × C Cat∞.

The uses of the twisted arrow category are manifold. It appears, as suggested above, in the

analysis of questions of representability throughout the higher categorical literature — e.g. in [Lur11,

Lur17]. In addition, it is used to explore Ek-monoidal ∞-categories in [Lur17]. In a completely

different direction, there is a fundamental connection between twisted arrow categories and ∞-

categories of spans/correspondences as described in, e.g. [DK19, Ch. 10],[Bar17], and [BGN18].

Moreover, this approach has been used to tackle questions related to K-theory in [Bar17].

1It is worth commenting that Cisinski and several other authors tend to work with the left fibration associated to
the same functor. The difference between the two definitions amounts to an “op”, in the definition of the simplices
of Tw(C). Throughout the paper, we will only use the Cartesian/right fibration convention, and will omit any
further mention of coCartesian/left fibrations.
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The 1-simplices of Tw(C) over a pair (α, β) comprising a 1-simplex in C × Cop take the form of

coherent diagrams

a b

a′ b′

f

α

g

β

in C. In practice, this means that that the fibers have 1-simplices consisting of diagrams

a b

f

g

that commute up to a chosen 2-cell, i.e. the morphisms in the fiber can be easily interpreted as two-

cells f
∼

g in C. More generally, the n-simplices of Tw(C) are given by maps ∆n ⋆(∆n)op C,

and the projections to C and Cop are induced by the inclusions ∆n ∆n ⋆ (∆n)op (∆n)op .

Towards an enhanced twisted arrow category

Given an ∞-bicategory C, presented as a fibrant scaled simplicial set, our aim will be to construct

an ∞-category Tw(C) together with a Cartesian fibration Tw(C) → C × Cop which classifies the

composite functor

Cop × C C
op × C Cat∞,

where Cat∞ is the (∞, 2)-category of ∞-categories. The first step towards this construction is to

decide what the 1-simplices of Tw(C) should be. We would still like these to be something like

diagrams

a b

a′ b′

f

α

g

β

in C, e.g. 3-simplices.

When α and β are identities, we would like these 3-simplices to encode precisely the choice

of a 2-morphism f g. However, heuristically such a 3-simplex should, in fact, encode two

factorizations:

a b

a′ b′

f

id

g

id

a b

a′ b′

f

id

g

id

together with the 3-simplex itself, which indicates that the composites — 2-morphisms f g

— of both factorizations are equivalent. Fortunately, in the realm of scaled simplicial sets, we

can declare certain 2-simplices to be ‘thin’ — i.e., declare the corresponding 2-morphisms to be

invertible. With this in mind, we can force half of each factorization to be invertible

a b

a′ b′

f

id

g

id
	

a b

a′ b′

f

id

g

id
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In this case, we obtain two 2-morphisms f g and a 3-simplex showing that they are equivalent

— precisely the data that we would like.2

This suggests a trial definition for the twisted arrow category of an ∞-bicategory.

The twisted arrow ∞-bicategory Tw(C) should have n-simplices

Tw(C)n := HomSetsc
∆

((∆n ⋆ (∆n)op, T ),C)

where T is the scaling given by requiring that, under the identification ∆n ⋆ (∆n)op ∼=

∆2n+1, the simplices {i, j, 2n + 1 − j} and {j, 2n + 1 − j, 2n + 1 − i} are thin for i < j.

However, we would expect such a construction to yield a fibration over the (∞, 2)-category C ×

Cop. There are technical difficulties to such a definition, not least the fact that the corresponding

Grothendieck construction has not yet appeared in the literature. While we expect this definition

to yield a genuine (∞, 2) twisted arrow category, we will restrict ourselves to the examination of

the induced functor Cop × C Cat∞

To restrict to the fibration classifying this functor, we use the expected base-change properties

of a hypothetical Cartesian Grothendieck construction3 over an ∞-bicategorical base. To wit, we

define Tw(C) to be the pullback

Tw(C) Tw(C)

C × Cop C × Cop

y

In terms of the scaling on ∆n ⋆ (∆n)op, This pullback simply amounts to requiring that every 2-

simplex contained within ∆n and every 2-simplex contained within (∆n)op is thin. Using pushouts

by scaled anodyne morphisms of the kind described in [GHL20, Rmk. 1.17], we can extend this

scaling to consider a cosimplicial object Q(n) := (∆n ⋆ (∆n)op, T ) in scaled simplicial sets, where

the non-degenerate thin simplices of T are:

• 2-simplices which factor through ∆n or (∆n)op.

• 2-simplices ∆{i,j,2n+1−k} and ∆{k,2n+1−j,2n+1−i} for 0 6 i 6 j 6 k 6 n.

This is the definition of Tw(C) we adopt throughout the present paper, which is justified by the

following result.

Theorem 0.1. Let C be an ∞-bicategory. Then Tw(C) → C×Cop is a Cartesian fibration classifying

the restricted mapping category functor

MapC : Cop × C C
op × C Cat∞

This is an amalgam of Theorem 2.5 and Theorem 3.3 from the text.

Applications: The category of natural transformations as an end

Once verified that our definition enjoys the desired properties we turn into our main motivation for

this paper: understanding the category of natural transformations Nat(F,G) between functors from

2On thing we are glossing over is why we choose the “lower” 2-simplices as thin, rather than the “upper” ones. In
a nutshell, the reason is that the lower 2-simplices will encode composites, and thus be unique up to contractible
choice.

3A likely candidate for the kind of fibration such a construction would involve is the outer Cartesian fibration of
[GHL20].
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an ∞-category to an ∞-bicategory. To do so, we obtain that expected description of the category

of natural transformations as an end.

Theorem 0.2. Let C be a ∞-category and D an ∞-bicategory. Then for every pair of functors

F,G : C → D there exists a equivalence of ∞-categories

NatC(F,G) lim
Tw(C)op

MapD(F (−), G(−))

which is natural in each variable.

This result allows us to analyze in greater detail the theory of weighted colimits of Cat∞-valued

functors exposed in [GHN15], showing that this definition coincides with the definition provided by

the first author in [AG20]. The proof of this fact together with the results of [AG20] constitute a

partial answer to a series of conjectures involving ∞-bicategorical colimits and a categorified theory

of cofinality introduced by the authors in [AGS20].

Structure of the paper

The paper will be laid out as follows. We begin with a preliminary section, which lays out the

notational conventions we follow, and explains several technical constructions and lemmata which

we use throughout the paper. In particular, we give basic definitions for cosimplicial objects, state

and prove a general lemma on subsets K ⊂ ∆n
† of a scaled n-simplex such that K ∆n

† is

scaled anodyne, and define a structure on a poset sufficient for us to give a clean description of the

simplicial mapping spaces in a quotient of its nerve.

From there, the work starts in earnest. In section 2, we give the formal definition of Tw(C), and

prove that Tw(C) → C × Cop is a Cartesian fibration, making use of the aforementioned lemma

on simplicial subsets of scaled n-simplices. We then turn to section 3, in which we prove that this

Cartesian fibration classifies precisely the enhanced mapping functor

Cop × C C
op × C Cat∞ .

This proof is highly technical, and freely uses results from [Lur09a] and [GHL20].

In section 4, our attention then turns to the true aim of the paper, a proof of the proposition

that, given two functors F,G : C → D from an ∞-category to an (∞, 2)-category, the ∞-category

of natural transformations between them can be expressed as a limit

Nat(F,G) ≃ lim
Tw(C)op

MapD(F (−), G(−)),

i.e., an end. Once again the proof is highly technical, making use of a wide variety of techniques

native to the contexts of scaled simplicial sets and marked simplicial sets. In particular, the proof

relies heavily on a sort of dévissage — one in which we reduce from the case of a general ∞-category

(indeed, simplicial set) C to the cases C = ∆0 and C = ∆1.

We conclude with applications of this theorem, where we upgrade several results appearing in

[GHN15].
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1 Preliminaries

We begin by presenting some background information necessary for the paper, and proving some

general lemmata which will help simplify the technical arguments in later sections. We will not,

in general, recapitulate material from [Lur09] and [Lur09a], as doing so would greatly extend the

length of the present document for dubious benefit. In particular, we will assume that the reader is

familiar with the theories of quasi-categories, Cartesian fibrations, and scaled simplicial sets, as well

as the attendant model structures. We will, however, briefly collect the notations and conventions

we will use for these before embarking on the preliminaries proper.

Notation (Model categories). We denote by Set∆ the category of simplicial sets, Set+
∆ the

category of marked simplicial sets, and Setsc
∆ the category of scaled simplicial sets. We consider

these to be equipped with the Joyal, Cartesian, and bicategorical model structures, respectively.

Where context clarifies the meaning, an unadorned Latin capital — e.g. X — may be used to

denote an object of any of these categories. When it is necessary to specify a marking or a scaling

on X ∈ Set∆, we do so by writing a superscript — e.g. X† — for a marking, and a subscript —

e.g. X† — for a scaling. In particular, the subscripts ♯ and ♭ will denote the maximal and minimal

scalings, respectively.

Notation (Rigidification). We denote by Cat∆ the category of simplicial set enriched cate-

gories, and by CatSet+
∆

the category of marked simplicial set enriched categories. We denote by

C : Set∆ Cat∆ the rigidification functor, and by C
sc : Setsc

∆ CatSet+
∆

its scaled variant. In

the presence of the sub- and superscript convention above, we will conventionally denote

C[X](x, y)† := C
sc[X†](x, y)

for any x, y ∈ X.

Convention (Fibrant objects). By an ∞-category, we will mean an (∞, 1)-category, presented as

either a quasi-category or a fibrant marked simplicial set. We will, wherever possible, use calligraphic

capitals — e.g. C — for ∞-categories.

By an ∞-bicategory, we will mean an (∞, 2)-category presented as a fibrant scaled simplicial

set.4 Where possible, we will denote ∞-bicategories by blackboard-bold capitals — e.g. C.

1.1 Cosimplicial objects

Definition 1.1. Let C be an ordinary 1-category. A functor F : ∆ C will be called a cosim-

plicial object in C.

Notation. Given [n] ∈ ∆ we will denote its image under F by F (n).

In the following sections, we will make extensive use of cosimplicial objects with target a cocom-

plete category C. Namely, those that can be “freely extendend” by colimits. Indeed by taking the

left Kan extension along the Yoneda embedding Y : ∆ Set∆ we can produce a pair of adjoint

functors

Y!F : Set∆ C : F ∗

4The potential for confusion between ∞-bicategories and weak ∞-categories created by the terminology of [Lur09a]
is obviated by [GHL20, Thm. 5.1].
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where for every c ∈ C the n-simplices of F ∗(c) are given by maps F (n) → c.

Example 1.2. Let C = Set∆ and let X ∈ Set∆. We define a cosimplicial object

(−) ×X : ∆ Set∆, [n] ∆n ×X.

The right adjoint to this cosimplicial object sends each ∞-category Y to the functor ∞-category

Fun(X,Y ).5

Notation. Let C be a cocomplete category and F a cosimplicial object on C. We set the following

notation

∂Fn = colim
∆I →∂∆n

F (I).

1.2 Scaled anodyne maps from dull subsets

Definition 1.3. Let P(n) denote the power set of [n] with n > 0. We say that A ( P(n) is dull if

the following conditions are satisfied:

1. It does not contain the empty set, ∅ /∈ A

2. There exists 0 < i < n such that i /∈ S for every S ∈ A.

3. It contains a pair of singletons {u}, {v} ∈ A such that u < i < v.

4. For every S, T ∈ A it follows that S ∩ T = ∅.

We will call the element i in condition (2), the pivot point.

Definition 1.4. Let A ( P(n) be a dull subset. Given an scaled n-simplex ∆n
† , we define

SA =
⋃

S∈A

∆[n]\S ( ∆n

and denote S equipped with the induced scaling by SA
† . When the choice of dull subset is clear, we

will use the abusive notation S†.

Definition 1.5. Let A ( P(n) be a dull subset. We call X ∈ P(n) an A-basal set if it contains

precisely one element from each S ∈ A. We denote the set of all A-basal sets by Bas(A).

Remark 1.6. Note that our definitions guarantee both that Bas(A) 6= ∅, and that all A-basal sets

have the same cardinality.

Definition 1.7. Given a dull subset A, we define MA to be the set of subsets X ∈ P(n) satisfying

the following conditions:

A1) X contains the pivot point, i ∈ X.

A2) The simplex σX : ∆X → ∆n does not factor through S.

We set κA := min{|X| | X ∈ MA} and define, for every κA 6 j 6 n, the subset Mj
A ⊂ MA

consisting of those sets of cardinality at most j.

Remark 1.8. To ease the notation, when the choice of dull subset it is clear we will drop the

subscript A in MA and κA.
5More generally, the right adjoint gives the internal hom of Set∆.
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Lemma 1.9. Let A be a dull subset of P(n) with pivot point i. Then it follows that

Mκ = {X0 ∪ {i} |X0 ∈ Bas(A)}.

Proof. Left as an exercise.

Notation. Let A ( P(n) be a dull subset with pivot point i. Given an A-basal set X, we will

denote by ℓXi−1 ℓ
X
i the pair of consecutive elements in X such that ℓXi−1 < i < ℓXi .

Lemma 1.10 (The pivot trick). Let A ( P(n) be a dull subset with pivot point i, and let ∆n
† be

an scaled simplex. For Z ∈ Bas(A) suppose that the following condition holds.

• For every r, s ∈ [n] such that ℓZi−1 6 r < i < s 6 ℓZi the simplex {r, i, s} is scaled in ∆n
† .

Then S† → ∆n
† is scaled anodyne.

Proof. For ease of notation we will drop the subscript denoting the scaling in this proof, assuming

that all simplicial subsets are equipped with the scaling inherited from ∆n
† . We define for κ 6 j 6 n

Yj = Yj−1 ∪
⋃

X∈Mj

σX ,

where we set Yκ−1 = S. This yields a filtration

S Yκ · · · Yn−1 Λni ∆n.

where Λni = Yn. We will show that each step of this factorization is scaled anodyne.

Let X ∈ Mj with κ 6 j 6 n − 1. Let us note that as a consequence Lemma 1.9 we obtain a

pullback diagram

ΛXi ∆X

Yj−1 Yj

y
σX

Additionally, the condition of the lemma guarantees that i together with its neighboring elements in

∆X form a scaled 2-simplex. Thus, the map ΛXi ∆X is scaled anodyne, allowing us to add ∆X .

It also follows from our definitions that given X,Y ∈ Mj such that X 6= Y then σX ∩σY ∈ Yj−1, so

that we can add the j-simplices ∆X to Yj−1 irrespective of their order. This shows that Yj−1 → Yj
is scaled anodyne.

Remark 1.11. It is worth noting that the procedure outlined in Lemma 1.10 only makes use of a

special subset of the scaled anodyne maps: that generated by the inner horn inclusions

Λni ∆n

where ∆{i−1,i,i+1} is scaled. Significantly, while the class of scaled anodyne maps is not, in general,

self-dual (i.e. fop : Xop Y op need not be scaled anodyne when f : X Y is), the class

generated by these scaled inner horn inclusions is. We will make use of this property to further

simplify applications of Lemma 1.10.
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1.3 Poset partitions

In section 3 it will be necessary for us to consider mapping spaces in quotients of nerves of posets,

as well as their scaled analogues. While these mapping spaces are quite straightforward to describe,

we here collect a number of descriptions and notations so as to better facilitate the flow of the later

sections of the paper.

Definition 1.12. Let J be a finite poset, and denote by J its nerve. We call a pair of subsets J0, J1

an ordered partition of J if the following three conditions are satisfied.

• J0 ∪ J1 = J .

• J0 ∩ J1 = ∅.

• For every x ∈ J0 and every y ∈ J1, we have either x < y or x and y are incomparable.

For such an ordered partition, we denote by JR the quotient

JR := J
∐

N(J1)

∆0,

and by J̃ the quotient

J̃ := ∆0
∐

N(J0)

J
∐

N(J1)

∆0.

We denote the two objects of J̃ by ∗0 and ∗1, and denote the ‘collapse point’ of JR by ∗1.

Remark 1.13. Note that the definition of an ordered partition is symmetric — the opposite of an

ordered partition is still an ordered partition. It is for this reason that we only consider the quotient

JR and not some analogous JL as well.

Example 1.14. In the sequel we will make extensive use of a cosimplicial object Q(n) := ∆n ⋆

(∆n)op. Each level of this cosimplicial object admits a canonical ordered partition. Under the

identification Q(n) ∼= ∆2n+1 = N([2n + 1]), this ordered partition is given by J0 = [n] and J1 =

{n+ 1, . . . , 2n+ 1}. We will abusively denote each of these ordered partitions by (JQ0 , J
Q
1 ).

Construction 1.15. Given a finite poset J and an ordered partition (J0, J1), we construct a poset

PJ as follows. The objects of PJ are totally ordered subsets S ⊂ J such that min(S) ∈ J0 and

max(S) ∈ J1, ordered by inclusion. We will denote the nerve by PJ := N(PJ).

Let S := (S0 ⊂ · · ·Sk) be a k-simplex of PJ. Set sR0 := min(S0∩J1). We define the right truncation

of S to be the simplex

SR := (SR0 ⊂ · · · ⊂ SRk )

where SRℓ := {s ∈ Sℓ | s 6 sR0 }. We similarly define sL0 := max(S0 ∩ J0) and its correspondig left

truncation SL where SLℓ := {s ∈ Sℓ |s > s
L
0 }. The ambidextrous truncation SA is obtained by taking

both the left and right truncation of S. We can then define two equivalence relations on PJ.

1. We say that k-simplices S and T are right equivalent, and we write

S ∼R T ,

when SR = TR.

9



2. We say that k-simplices S and T are ambi-equivalent, and we write

S ∼A T ,

when SA = TA.

Note that both of these equivalence relations respect the face and degeneracy maps, so that the

quotients of PJ by ∼R and ∼A are simplicial sets.

Finally, for any j ∈ J0, we define P jJ ⊂ PJ to be the full subposet on those sets S with min(S) = j.

Note that ∼R descends to an equivalence relation on P
j
J
.

We can then characterize the desired mapping spaces of C[J] in terms of the above posets.

Lemma 1.16. Let J be a finite poset, and (J0, J1) and ordered partition of J . Then

1. for every j ∈ J0 there is an isomorphism

C[JR](j, ∗1) ∼= (Pj
J
)/∼R

.

2. There is an isomorphism

C[J̃](∗0, ∗1) ∼= (PJ)/∼A
.

Proof. Follows from, e.g., the necklace characterization of [DS11] once the definitions have been

unwound.

2 The enhanced twisted arrow category

Our construction of the enhanced twisted arrow category will depend on an upgrade of the cosim-

plicial object

∆ Set∆, [n] ∆n ⋆ (∆n)op

to a cosimplicial object in scaled simplicial sets. For a discussion of the intuition behind this choice

of scaling, see the introduction. To simplify some of the discussion to come, we introduce some

notational conventions surrounding ∆n ⋆ (∆n)op. Note, before we begin, that there is a canonical

identification ∆n ⋆ (∆n)op ∼= ∆2n+1, which we will often use without comment.

Notation. In general, we will denote elements of ∆n ⋆ (∆n)op by i ∈ ∆n or i ∈ (∆n)op. Note that

under the identification ∆n ⋆ (∆n)op ∼= ∆2n+1, i is identified with 2n+ 1 − i. We denote the unique

duality on ∆n ⋆ (∆n)op by

τn : ∆n ⋆ (∆n)op (∆n)op ⋆∆n, i i.

When n is clear from context, we will simply denote τn by τ .

Definition 2.1. We define a cosimplicial object

Q : ∆op Setsc
∆, [n] ∆n ⋆ (∆n)op

by declaring a non-degenerate 2-simplex σ : ∆2 ∆n ⋆ (∆n)op to be thin if:

• σ factors through ∆n ⊂ Q(n);

• σ factors through (∆n)op ⊂ Q(n);

10



• σ = ∆{i,j,k}, where i < j 6 k; or

• σ = ∆{k,j,i}, where i < j 6 k.

Note that the scaling is symmetric under τn by definition; i.e. the maps τn define dualities on the

scaled simplicial sets Q([n]).

The ‘nerve’ operation associated to Q is a functor

Z∗ : Setsc
∆ Set∆

defined by setting (Z∗X)n := HomSetsc
∆

(Z([n]),X).

Remark 2.2. We will often abuse notation and denote Q([n]) by Q(n). We will adopt a similar

convention for other cosimplicial objects without comment.

Definition 2.3. Let C be an ∞-bicategory with underlying ∞-category C. The enhanced twisted

arrow category of C is the marked simplicial set

Tw(C) := (Q∗
C, E)

where the edges of E are precisely those corresponding to maps ∆3
♯ C. Note that the inclusions

∆n
♯ ⊂ Q(n) and (∆n)op

♯ ⊂ Q(n) induce a canonical map

Tw(C) → C × Cop

of simplicial sets.

Remark 2.4. It is immediate from the definitions that Tw(C) is the ∞-categorical twisted arrow

category of [Lur11]. With some work it can be shown that this is precisely the simplicial subset of

Tw(C) spanned by the marked morphisms.

The immediate aim of this section is to prove the following theorem, which can be seen as an

(∞, 2)-categorical analogue of [Lur11, Prop. 4.2.3].

Theorem 2.5. For any ∞-bicategory C with underlying ∞-category C, the canonical map

Tw(C) C × Cop

is a Cartesian fibration and the marked edges are Cartesian.

The proof of Theorem 2.5, while it involves some combinatorial yoga, begins with the usual,

straightforward approach: for each 0 < i 6 n, we consider the lifting problems

(Λni )♭ Tw(C)

(∆n)♭ C × Cop

(1)

and pass to adjoint lifting problems. It is worth noting that, in the case i = n, we will in fact

consider the edge ∆{n−1,n} ⊂ Λnn to be marked.
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Construction 2.6. The adjoint lifting problem to (1) will be the extension problem

(Kn
i )† C

Q(n)

(2)

where (Kn
i )† ⊂ Q(n) is the scaled simplicial subset consisting of those simplices σ : ∆m → Q(n)

which fulfill one of the following three conditions.

• σ factors through ∆n ⊂ Q(n).

• σ factors through (∆n)op ⊂ Q(n).

• There exists an integer j 6= i such that neither j nor j is a vertex of σ.

Construction 2.7. We denote by Q(n)⋄ the scaled simplicial set defined by adding to the scaling

of Q(n) the triangles of the form {n − 1, n, j}, {n − 1, n, j} as well as their duals induced by τ . It

is immediate to observe that solutions to the lifting problem

(Kn
n )⋄ C

Q(n)⋄

correspond to solutions to (1) with i = n, mapping the last edge in Λnn to a marked edge in Tw(C).

Construction 2.8. Let 0 < i 6 n and define Kn
i to be the simplicial set obtained by adding to

Kn
i the faces d0 and d2n+1. Denote by (Kn

i )†, (Kn
n)⋄ the resulting simplicial sets obtained via the

induced scaling.

Our proof will proceed by showing that both morphisms in each factorization

(Kn
i )† (Kn

i )† Q(n)

and

(Kn
n )⋄ (Kn

n)⋄ Q(n)⋄

are scaled anodyne.

Lemma 2.9.

1. For 0 < i < n the morphism (Kn
i )† Q(n) is scaled anodyne.

2. The morphism (Kn
n)⋄ Q(n)⋄ is scaled anodyne.

Proof. For 0 < i 6 n, we note that unwinding the definition shows that Kn
i = SAi , where Ai ⊂

P(2n+ 1) is the dull subset containing {0}, {2n+ 1}, and {j, j} for 0 < j 6 n such that j 6= i. The

lemma follows immediately from Lemma 1.10.

Lemma 2.10.

1. For 0 < i < n the morphism (Kn
i )† (Kn

i )† is scaled anodyne.

2. For i = n the morphism (Kn
n )⋄ (Kn

i )⋄ is scaled anodyne.
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Proof. Let 0 < i 6 n and note that since d0 ∩ d2n+1 ∈ Kn
i it will suffice to show that the top

horizontal morphism,

Y ε
i ∆2n

(Kn
i )∗ (∆2n+1)∗

y
dε

where ε ∈ {0, 2n + 1} and ∗ ∈ {†, ⋄}, is scaled anodyne.

We will first deal with the case ε = 0. Let 1 6 r 6 n and define

σr : ∆[r,2n+1] ∆2n+1

to be the obvious inclusion. Let us remark that σ1 = d0 and that σr factors through d0 for every

possible r. We produce a filtration

Y 0
i = Xn+1 Xn · · · X2 ∆[1,2n+1] = X1

where Xr is obtained by adding the simplex σr to Xr.

It will thus suffice for us to check that the upper horizontal morphism in the pullback diagram

(i.e. the restriction of σr to Xr+1)

Zr ∆[r,2n+1]

Xr+1 ∆[1,2n+1]

y

is scaled anodyne. However, we can observe that Zr consists of a union in ∆[r,2n+1]

• The (2n− r)-dimensional face dr.

• The (2n− 1)-dimensional faces d2n+1−j where 0 6 j < r and j 6= i.

• The (2n − r − 1)-dimensional faces given given by those simplices missing a pair of vertices

{j, 2n + 1 − j} with r 6 j 6 n and j 6= i.

That is, Zr = SAr , where Ar ( P(2n + 1 − r) is the dull subset containing

• {0}.

• The singletons {j} for 2n+ 1 − 2r < j 6 2n+ 1 − r with j 6= 2n− r − i+ 1.

• The sets {k, 2n + 1 − 2r − k} for 0 6 k 6 n− r with r + k 6= i.

One can easily verify that the scaling satisfies the conditions of Lemma 1.10, and thus Zr
∆[r,2n+1] is scaled anodyne. Consequently, each step of the filtration

Y 0
i = Xn+1 Xn · · · X2 ∆[1,2n+1] = X1

is scaled anodyne, completing the proof that Y 0
i ∆[1,2n+1] is scaled anodyne.

We conclude the proof by noting that the case Y 2n+1
i ∆[0,2n] is formally dual, so by

Remark 1.11, the proof is complete.

Proof of Theorem 2.5. Combining Lemma 2.9 and Lemma 2.10, it is immediate that (1) Tw(C) →

C × Cop is an inner fibration, and (2), the marked edges are Cartesian. It remains only for us to
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show that there is a sufficient supply of marked edges. Unwinding the definitions, we find that this

will be true so long as the lifting problems

Sp3 C

∆3
♯

admit solutions, where Sp3 := ∆{0,1}∐
∆{1} ∆{1,2}∐

∆{2} ∆{2,3} is the spine of the 3-simplex. How-

ever, the left-most map is clearly scaled anodyne so a solution to this problem is guaranteed by

fibrancy. The result now follows.

3 The functor classified by Tw(C)

Having now established the Cartesian fibrancy of Tw(C) C, we aim to determine the functor

which it classifies. It will come as no surprise to those familiar with other twisted-arrow category

constructions that the functor in question will be the enhanced mapping functor of [GHN15], i.e., the

mapping category functor of C restricted to Cop ×C. The solution to this classification problem will

be quite involved and technical, involving a number of intermediate ∞-categories. Where possible,

we will attempt to elucidate the meaning and function of these constructions in the text.

3.1 The comparison map

We now turn our attention to the first step in our proof: constructing the comparison map. This part

of the proof will be quite straightforward and in total analogy with its ∞-categorical counterpart

in [Lur11]. To construct the desired map, we fix, once an for all, the following data:

• An ∞-bicategory C together with its underlying ∞-category C.

• A fibrant Set+
∆ enriched category D, and its maximally marked subcategory (Kan-complex

enriched) D, with a commutative diagram

C
sc[C] D

C
sc[C] D

≃

≃

such that the horizontal arrows are weak equivalences of Set+
∆-enriched categories.

With this data fixed, the enhanced mapping functor is the composite

F : Dop × D D
op × D

Map
Cat∞

To retain concision, we use the pedestrian notation F for the enhanced mapping functor, rather

than the more suggestive MapD.

Proposition 3.1. There is an map

β : Tw(C) → Un+
C×Cop(F )

of Cartesian fibrations over C × Cop.
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Proof. The proof proceeds along the same lines as the analogous argument in [Lur11]. We define

an ancillary simplicial category E with objects either the objects of Dop × D, or a "cone point" v.

The mapping spaces will be those of Dop × D if they don’t involve v, and will be defined by

MapE(v, (D,D′)) := ∅

MapE((D,D′), v) := MapD(D,D′)

otherwise.

As in [Lur11], a map over C×Cop preserving markings — β : Tw(C) UnC×Cop(F ) — will be

equivalent to giving a map

γ : Tw(C)⊲ N(E)

such that the diagram

Tw(C)⊲

Tw(C) C × Cop N(D) × N(D)op N(E)

commutes, and such that, for every f : ∆1 → Tw(C) which is marked, the two-simplex f ∗ id∆0 :

∆1 ⋆ ∆0 → Tw(C)⊲ → N(E) is sent to a scaled 2-simplex in Nsc(E).6 (Equivalently, if the adjoint

map C[∆2] → E determines a marked edge in the mapping space from 0 to 2.)

We now define the map in question: Given an n-simplex σ : ∆n → Tw(C), we obtain by definition

and adjunction a map

νσ : C[∆2n+1] C[C] D.

We now define a map

γσ : C[∆n+1] E

On C[∆n] ⊂ C[∆n+1], this is completely determined by the commutativity condition above. For

mapping spaces involving the (n+ 1)st-vertex, we define the maps

ζi : O
n+1(i, n + 1) O

2n+1(i, 2n + 1 − i)

S ∪ {n+ 1} S ∪ τ(S)

where S is considered as a subset of [n], and τ is the involution on vertices of ∆2n+1. We then

define

γσ : O
n+1(i, n + 1)

ζ
O

2n+1(i, 2n + 1 − i)
νσ

MapD(νσ(i), νσ(2n + 1 − i))

Completing our definition of γσ, and thus of γ. It is obvious from our definitions that γ respects

the marking/scalings.

Remark 3.2. The definition of the maps ζi which allow us to define the map above are quite

ad-hoc in appearance, as indeed are their analogues in [Lur11]. Once we pass to fibers, the map can

be much more elegantly defined: in terms of a composite with a map of posets (see Remark 3.19).

The goal of the remainder of this section will be the proof of the following.

6Note that (1) this follows directly from unwinding the characterization of the marked 1-simplices of the straightening
in [Lur09, 3.2.1.2], and (2) this is in nearly precise analogy with the definition of the scaling on the scaled cone in
[Lur09a, 3.5.1.]
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Theorem 3.3. The map β is an equivalence of Cartesian fibrations over C × Cop.

3.2 Interlude: a compendium of cosimplicial objects

In the sections which follow, there will be a variety of cosimplicial objects in play, each relating to a

specific construction necessary for the proof. For ease of reference, we list these here, and describe

additional structures (in particular ordered partitions) which will come into play in their study.

Definition 3.4 (The compendium). We fix, for the rest of the section, the following cosimplicial

objects, along with ordered partitions of their nth levels.

1. A cosimplicial object
⋆ : ∆ Setsc

∆

[n] ∆n ⋆∆0

where the scaling on ⋆(n) = ∆n ⋆∆0 is given by declaring every 2-simplex in ∆n ⊂⋆(n) to

be thin.

• We define an ordered partition (J⋆0 , J
⋆

1 ) of ⋆(n) for each n by setting J⋆0 = [n] and

J⋆1 = {n+ 1}, where we have identified ⋆(n) with N([n + 1]).

2. A cosimplicial object
⊠ : ∆ Setsc

∆

[n] ∆n ⋆ (∆n)op ⋆∆0

We use our existing notational conventions for objects of Q(n) ⊂ ⊠(n), and denote the final

vertex by v. We equip ⊠(n) with a scaling by (1) requiring the inclusions Q(n) ⊂ ⊠(n) and

((∆n)op ⋆ ∆0)♯ ⊂ ⊠(n) to be maps of scaled simplicial sets; and (2) declaring any simplex of

the form ∆{j,i,v}, where 0 6 i 6 j 6 n, to be thin.

• We define an ordered partition (J⊠0 , J
⊠
1 ) of ⊠(n) for each n by setting J⊠0 = [n] and

J⊠1 = {n+ 1, n + 2, . . . 2n+ 2} under the identification of ⊠(n) with N([2n + 2]).

3. A cosimplicial object
� : ∆ Setsc

∆

[n] ∆n × ∆1

where the scaling consists of those triangles factoring through ∆n × ∆{1} and those specified

in [Lur09a, 4.1.5].

• We define an ordered partition (J�0 , J
�
1 ) of �(n) by setting J�0 := [n] × {0} and J1 =

[n] × {1} under the identification of � with N([n] × [1]).

3.3 Comparison with outer Cartesian slices

Having established the existence of a comparison map β : Tw(C) F of Cartesian fibrations,

we now must pause and circumnavigate our way to a proof that it is an equivalence. The winding

route we take will make use of a Cartesian fibration C/y defined in [GHL20]. The utility of C/y

for us lies in the fact that, as established in [GHL20, §2.3], C/y classifies the contravariant Yoneda

embedding Yy on D. In spite of the fact that C/y C is a Cartesian fibration, we will refer to C/y

as the outer Cartesian slice category, in recognition of the fact that our C/y C is a pullback

along the inclusion C C of an outer Cartesian fibration as defined in [GHL20]. We begin by

recalling the definition of C/y.
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Definition 3.5. For an object y ∈ C, we define the outer Cartesian slice category C/y whose

n-simplices are given by maps

σ : ⋆(n) C, such that σ|n+1 = y.

We equip C/y with a marking by declaring an edge to be marked precisely when it can be represented

by a map ∆2
♯ C. Note that the canonical inclusion ∆n

♯ ⊂⋆(n) induces a map C/y C.

Proposition 3.6 ([GHL20, Cor. 2.18]). The functor C/y C is a Cartesian fibration, and

an edge of C/y is Cartesian if and only if it is marked.

Since our mode of proof is so circuitous, let us take a moment to sketch the path we will take.

We begin by showing that there is a span

(C/y)x Mx,y Tw(C)(x,y)
∼∼

displaying a weak equivalence of the fibers of C/y and Tw(C).

We then show that there is a weak equivalence

Un+
∗ (Csc[D](x, y)) Unsc

∗ (Csc[D](x, y)).

From [GHL20], there is an equivalence

f : (C/y)x Unsc
∗ (Csc[D](x, y)).

The final step to showing that β is an equivalence is therefore establishing that the diagram

(C/y)x Mx,y Tw(C)(x,y)

Unsc
∗ (Csc[D](x, y)) Un+

∗ (Csc[D](x, y))

f≃

∼∼

β

≃

commutes up to equivalence.

We begin this journey in the present section by defining the span

(C/y)x Mx,y Tw(C)(x,y)
∼∼

and showing that its legs are weak equivalences.

Notation. Let x, y ∈ C. We denote by Tw(C)y the pullback

Tw(C)y Tw(C)

C C × Cop
id ×{y}

and by Tw(C)(x,y) the fiber over (x, y) ∈ C × Cop.

Definition 3.7. For y ∈ C, we define a simplicial set My whose n-simplices are given by maps

σ : ⊠(n) C such that σ|
N(J⊠

1 ) = y.
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Note that these are, equivalently, maps ⊠(n)R → C. The inclusion ∆n
♯ = N

(
J⊠0
)
♯ ⊂ ⊠(n) induces

a map My C.

Remark 3.8. We will view ⋆(n), ⊠(n), and Q(n) as equipped with their ordered partitions from

Definition 3.4 and Example 1.14, and consider their right quotients ⋆(n)R, ⊠(n)R, and Q(n)R,

each of which piece together to form a cosimplicial object in Setsc
∆. The obvious natural inclusions

⋆R ⊠R QR

then induce maps

C/y My Tw(C)y
πρ

over C.

Proposition 3.9. The map π : My Tw(C)y is a trivial Kan fibration.

Proof. We first aim to show that the inclusions in : Q(n)R ⊠(n)R are scaled trivial cofibrations.

To this end, we define a map

rn : ⊠ (n) Q(n)

i




i i < 2n + 2

i− 1 i = 2n + 2

We see immediately that rn descends to a map rn : ⊠ (n)R Q(n)R, and that rn ◦ in = id.

Moreover, one can check that the natural transformation in ◦ rn ⇒ id descends to a transformation

∆1
♭ ×⊠(n)R ⊠(n)R

whose components are degenerate. Consequently, we see that in is an equivalence of scaled simplicial

sets. We then consider the boundary lifting problem and its associated adjoint problem

∂∆n My

∆n Tw(C)y

π  

Kn C

⊠(n)R

Kn = ∂(⊠R)n
∐

∂(QR)n

Q(n)R

Examining Definition 1.12, we note that we can extend our conventions to Q(∅)R = ∆0 and

⊠(∅)R = ∆0. Consequently, we can write

∂(⊠R)n = hocolim
I([n]

⊠(I)R and ∂(QR)n = hocolim
I([n]

Q(I)R.

Since the two diagrams are naturally equivalent, this yields an equivalence ∂(QR)n
≃

∂(⊠R)n.

Since this map is a trivial cofibration it follows that Q(n)R → Kn is an equivalence. Finally we

consider the factorization

Q(n)R Kn ⊠(n)R

and we conclude by 2-out-of-3 that the map Kn → ⊠(n)R is a trivial cofibration. This finishes the

proof.

Corollary 3.10. The map My → C is a Cartesian fibration, and π : My Tw(C)y is an equiv-
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alence of Cartesian fibrations over C.

Lemma 3.11. The Cartesian edges of My over C are precisely those which can be represented by

scaled maps ⊠1
† → C, where † is the extension of the scaling on ⊠1 to include

1. all 2-simplices in ∆1 ⋆ (∆1)op, and

2. the 2-simplex ∆{01,v}.

Proof. Left as an exercise to the reader.

Corollary 3.12. The map ρ : My C/y is a map of naturally-marked Cartesian fibrations over

C.

Proposition 3.13. For any x ∈ C, denote the fiber of My over x by Mx,y. Then the induced map

ρ : Mx,y (C/y)x

is a trivial Kan fibration.

Proof. We follow effectively the same method as in the proof of Proposition 3.9, now using the

two-sided quotients ⋆̃(n) and ⊠̃(n) of the defining cosimplicial objects. By the same homotopy

colimit argument, it will suffice for us to show that

in : ⋆̃(n) ⊠̃(n)

is an equivalence. However, in is already a bijection on objects, so it will suffice for us to show that

in induces an equivalence on the single non-trivial mapping space. To this end, we make use of the

characterization of Lemma 1.16. It will thus suffice to to show that the maps of marked simplicial

sets

s̃ :
(
P⋆(n)

)
/∼A

(
P⊠(n)

)
/∼A

are equivalences for any n. For the rest of the proof we will abuse notation and denote the nerves

of these posets by P⋆ and P⊠.

We will work with the unquotiented simplicial sets, and define maps which descend to quotients.

Before we can do this, however, we must fix some notation. We denote object S ∈ P⊠ by triples

(S0, S1, S2) of subsets of each of the three joined components in ⊠(n) = ∆n ⋆ (∆n)op ⋆∆0. We will

similarly denote objects of P⋆ by pairs (S0, v) of sets. Note that with this new coordinates the

unquotient version of s̃ can be described as

s : P⋆ P⊠, (S0, v) (S0,∅, v)

We define PG ⊂ P⊠ as the nerve of the full subposet on those objects of the form

• (S0,∅, v).

• (S0, S1, v) such that

– S1 6= ∅

– S1 ∪ {v} contains all elements of ⊠(n) greater than min(S1), and

– τ(S1) ⊂ S0.
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We equip PG with the induced marking producing a factorization P⋆
sα

PG
sβ

P⊠. In light of

this fact, we will turn our efforts into showing that sα, sβ descend to equivalences s̃α and s̃β. We

define a marking-preserving map of posets

rα : PG P⋆, (S0, S1, v) (S0, v)

such that rα◦sα = id. We, moreover, observe that there is a natural transformation εα : sα◦rα ⇒ id

whose components are marked in PG. To check that εα (and consequently rα) factors through the

quotient it is enough to note that given k-simplices S ∼A T in PG then it follows that S ∼L T . We

can now conclude that s̃α is an equivalence.

We define a map of posets

rβ : P⊠ PG

(S0, S1, S2)





(S0,∅, v) if S1 = ∅

(S0 ∪ τn([min(S1), v)), [min(S1), v), v) otherwise.

such that rβ ◦ sβ = id and note that there is a map S → rβ(S) inducing a natural transformation

εβ : id ⇒ sβ ◦ rβ. To show that PG P⊠ is an equivalence, it is sufficient to check that

rβ preserves markings, that εβ descends to quotients, and that the components of the natural

transformation become equivalences in the fibrant replacement of the localizations. We will prove

here that εβ descends to the quotient leaving the rest of the checks as exercises for the interested

reader. Let S ∼A T be k-simplices and denote by βS and βT their images under rβ . Let sR0 , s
L
0 be

the truncation points for S and denote by βsR0 ,
βsL0 the truncation points for βS. It is immediate to

see that

βsR0 = sR0 ,
βsL0 =





max
{
sL0 ,τ(βsR0 )

}
if (S0)1 6= ∅

sL0 otherwise.

This implies that, in order to show our claim, it suffices to check that for every ℓ ∈ [k] the

ambidextrous truncations of βSℓ,
βTℓ with respect to sL0 , s

R
0 coincide. If (Sℓ)1 6= ∅ the conclusion

follows immediately. We will also assume that κ = τ(min((Sl)1)) < max((Sl)0), since otherwise we

would have βSℓ = βTℓ. Denote by βŜAℓ the truncation with respect to our chosen points. Then we

observe that

βŜAℓ =





[sL0 , κ] ∪ (Sℓ)
>κ
0 ∪ [τ(κ), v] if sL0 6 κ

(Sℓ)0 ∪ [τ(κ), v] otherwise

where (Sℓ)
>κ
0 stands for the obvious notation. Since this only depends on SAℓ it follows that βŜAℓ =

βT̂Aℓ .

We thus have completed the first step of the proof:

Corollary 3.14. The maps

C/y My Tw(C)y
πρ

are equivalences of naturally marked Cartesian fibrations over C.

Remark 3.15. This would already be sufficient, in light of [GHL20, §2.3], for us to conclude that

Tw(C)y classifies the restriction to C of the representable functor defined by y. It is not, however,

sufficient to show that Tw(C) classifies the enhanced mapping functor. We still have work to do.
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3.4 Comparing the comparisons

By [GHL20], there are equivalences of marked simplicial sets

(C/y)x
∼

(Cx/)y
∼

Unsc
∗ (C[C](x, y))

where Unsc
∗ is the scaled coCartesian unstraightening, and Cx/ denotes the scaled slices defined

using the fat join in [Lur09a, 4.1.5].7 We also have, by Proposition 3.1, a comparison map

β : Tw(C)x,y → Un+
∗ (C[C](x, y)) ,

where Un+
∗ is the marked Cartesian unstraightening.

We now aim to compare these two comparison maps, using the equivalence between Tw(C)y
and C/y of Corollary 3.14. The first step is to relate the scaled coCartesian and marked Cartesian

straightenings over the point.

Construction 3.16. We denote the former by Stsc and the latter by St+, leaving the point implicit.

These give us two functors

Stsc,St+ : Set∆+ Set+
∆

By [ADS20, Lem. 4.3.3], to display a natural equivalence between them it will suffice to display it on

simplices. By definition, we have that Stsc(∆n) = C
sc[�̃(n)](x, y) and St+(∆n) = C

sc[⋆̃(n)](x, y).

Since the collapse map
∆n × ∆1 ∆n ⋆∆0

(i, k)




i k = 0

n+ 1 k = 1

preserves the scaling and ordered partitions, we thus obtain compatible maps θn : Stsc((∆n)♭)

St+((∆n)♭) and Stsc((∆1)♯) St+((∆n)♯) Moreover, the triangles

Stsc((∆n)♭) St+((∆n)♭)

(∆n)♭

θn

p q

commute, where q is the map π of [Lur09, Prop 3.2.1.14], and p is the map α of [Lur09a, Prop.

3.6.1]. Since both of these are marked equivalences, we have that θn is as well. Thus, θ extends to

a natural equivalence θ : Stsc St+.

It immediately follows that

Lemma 3.17. The natural transformation µ : Unsc → Un+ adjoint to θ is an equivalence.

It now remains only for us to show

7Technically speaking, in [Lur09a] Lurie defines a scaled coCartesian fibration Cx/ C. We will make use of the
pullback along C C, and denote it by C

x/.
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Proposition 3.18. The diagram

(C/y)x Mx,y Tw(C)(x,y)

Unsc
∗ (Csc[D](x, y)) Un+

∗ (Csc[D](x, y))

f≃

∼∼

β

≃

(3)

commutes up to natural equivalence.

To effect a proof, we first note that the maps f and β are both induced by maps of posets. For

the reader’s convenience, we briefly unwind how in the case of β. For f , we merely state the poset

map in question, and leave it to the interested reader to unwind the definitions.

Remark 3.19. Given an n-simplex σ of Tw(C)(x,y), the simplex β(σ) of Un+ (Csc[D](x, y)) is given

by pulling back the rigidification C[σ̃] of the adjoint map

σ̃ : Q̃(n) C

along the maps ζi constructed in Proposition 3.1. Using the poset-quotient description of the map-

ping spaces, however, one can easily check that the ζi’s combine to define a map

B : P⋆(n) PQ(n), (S0, v) (S0, τ(S0))

with associated map on the quotient B̃ : Csc[⋆̃(n)](∗0, ∗1) C
sc[Q̃(n)](∗0, ∗1). That is, β(σ) is

defined by pulling back C[σ̃] along B̃.

More generally, let σ be a simplex of Mx,y and σ̃ : ⊠̃(n) C its adjoint. The right-hand

composite γ : Mx,y Unsc
∗ (Csc[D](x, y)) in (3) is given by pulling C[σ̃] back along a map

C
sc[(�(n))R](∗0, ∗1) → C

sc[⊠̃(n)](∗0, ∗1) induced by8

G : P�(n) P⊠(n), (S0, S1) (S0, τ(S0), v).

The left hand composite η : Mx,y Unsc
∗ (Csc[D](x, y)) in (3) is given by pulling C[σ̃] back along

a map C
sc[(�(n))R](∗0, ∗1) → C

sc[⊠̃(n)](∗0, ∗1) induced by

H : P�(n) P⊠(n), (S0, S1) (S0,∅, {v}).

With these definitions in place, we can proceed to the final step of our proof.

Proof of Proposition 3.18. We will define an explicit homotopy (∆1)♯×Mx,y Unsc
∗ (Csc[D](x, y))

between γ and η.

Given an n-simplex (ρ, σ) : ∆n (∆1)♯ × Mx,y, we note that ρ is uniquely specified by 0 6

i 6 n+ 1:

(0, 0, . . . , 0,

i︷︸︸︷
1 , 1, . . . , 1).

We define, for S0 ⊂ [n], the subset S>i0 := {s ∈ S0 | s > i} and then define a map

hρ : P�(n) P⊠(n), (S0, S1) (S0, τ(S>i0 ), v)

8In point of fact, unraveling the definitions would lead one to believe that map is induced by (S0, S1)
(S0, τ (S0),∅), however, both this map and G lead to the same map on quotients, so the distinction is irrele-
vant.

22



Note that, when i = n + 1 (i.e. ρ is constant on 0) we have that τ(S>i0 ) = ∅, so that the map

specializes to H. Similarly, when i = 0 (i.e. ρ is constant on 1) S>i0 = S0, so that the map specializes

to G.

Let us check that hρ descend to quotients. Note that the case where ρ is constant on 0. In order

to do so, given a k-simplex S we compute its ambidextrous truncation in P⊠(n). Let l ∈ [k] and

denote (Sl)0 ∩ [sL0 , n] = Ŝl. Then we obtain

hρ(S)Al =





(Ŝl, τ(Ŝl)) if i 6 sL0(
Ŝl, τ(Ŝl) ∩ [n + 1, τ(i)]

)
if sL0 < i < n+ 1

(Ŝl,∅, v) if i = n+ 1

since this only depends on the truncation of S the claim follows. It is immediate that the maps

respect the simplicial identities, so sending a simplex (ρ, σ) ∈ ∆1 ×Mx,y to the simplex h∗
ρ(C[σ̃]) ∈

Unsc(C[C](x, y)) defines a homotopy η γ.

To see that it is a marked homotopy, consider the 1-simplex (0, 1) in ∆1, and a degenerate 1-

simplex σ : ⊠ (1)♯ C in Mx,y. This corresponds to a map (P⊠(1))
♯

C[C](x, y), and so

pulling back along h{0,1} : P�(1) → P⊠(1) yields a map

h∗
{0,1}(γ) : (P�(1))

♯
C[C](x, y),

i.e., a marked morphism in Unsc(C[C](x, y)). We have thus defined a marked homotopy as desired,

and the proof is complete.

For completeness, we can now give

Proof of Theorem 3.3. Using Proposition 3.18, the theorem follows immediately by 2-out-of-3 from

Corollary 3.14, the equivalence of [GHL20, Prop. 2.24], and Lemma 3.17.

4 Natural transformations as an end

In this section we will denote by X be a maximally scaled simplicial set and by D an ∞-bicategory

that will remain fixed throughout. Given a pair of functors F,G : X D we will denote the asso-

ciated mapping category in DX by NatX(F,G). The aim of this section is to show that NatX(F,G)

can be expressed as the limit of the functor

N(F,G) : Tw(X)op Xop ×X Dop × D Cat∞.
F op×G MapD(−,−)

That is to say, the ∞-category of natural transformations can be obtained as an end, in the termi-

nology of [GHN15].

Definition 4.1. Let ℓ : DX ×
(
DX

)op
Fun(Tw(X),D × Dop) be the functor that maps a

simplex of the product σ1 : X × ∆n D, σ2 : X × (∆n)op D to the composite

Tw(X) × ∆n X ×Xop × ∆n D × Dop.
(σ1,σ

op
2 )

We define a marked simplicial set LX equipped with Cartesian fibration to DX ×
(
DX

)op
via the
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pullback square

LX Fun(Tw(X)♯,Tw(D)†)

DX ×
(
DX

)op
Fun(Tw(X),D × Dop).

y

ℓ

Remark 4.2. Given a pair of functors F,G we see that the fiber (LX)(F,G) is given by the category

of “ways of completing the commutative diagram”

Tw(X) Tw(D)

X ×Xop D × DopF×Gop

In other words, it is precisely the category of Cartesian sections associated to N(F,G). In particular

it follows from [Lur09, Cor. 3.3.3.2] that (LX)(F,G) is a model for the limit lim
Tw(X)op

N(F,G). We will

abuse notation and denote the fiber by L(F,G) when the diagram category is clear from the context.

Recall the canonical map DX ×X D and note that since Tw(−) preserves limits we can use

the tensor-hom adjunction to produce

u : Tw
(
D
X
)

Fun(Tw(X)♯,Tw(D)†)

fitting into the commutative diagram

Tw
(
DX
)

Fun(Tw(X)♯,Tw(D)†)

DX ×
(
DX

)op
Fun(Tw(X),D × Dop).

θ

ℓ

This in turn yields a map of Cartesian fibrations ΘX : Tw(DX) LX which we call the canonical

comparison map. The rest of this section is devoted to showing that ΘX is a fiberwise equivalence

for every simplicial set X. Our first observation is that both constructions behave contravariantly

in the simplicial set X thus producing functors

Tw
(
D

(−)
)
,L(−) : Setop

∆ Set+
∆

equipped with a natural transformation Θ: Tw
(
D(−)

)
L(−). We can now state the main

result of the section.

Theorem 4.3. For every simplicial set X ∈ Set∆, the map ΘX : Tw
(
DX
)

LX is an equiva-

lence of Cartesian fibrations over DX ×
(
DX

)op
.

Our proof strategy will consist in reducing the problem to the case X = ∆n with n = 0, 1. In

order to achieve this we will show that the both functors are homotopically well-behaved.

Proposition 4.4. Let α : X Y be a cofibration of simplicial sets. Then for every pair of
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functors F,G ∈ DY the induced maps

Tw
(
D
Y
)

(F,G)
Tw

(
D
X
)

(α∗F,α∗G)
, (LY )(F,G) (LX)(α∗F,α∗G)

are fibrations in the Joyal model structure.

Proof. Let us observe that due to Theorem 2.5 and [Lur09, Cor. 2.4.6.5], to check that the first

map is a Joyal fibration it will suffice to solve the lifting problems

(Λni )♭ Tw(DY )(F,G)

(∆n)♭ Tw(DX)(α∗F,α∗G)

(∆0)♯ Tw(DY )(F,G)

(∆1)♯ Tw(DX)(α∗F,α∗G)

with n > 2 and 0 < i < n. These lifting problems can be easily seen to be equivalent to their adjoint

problems (where we are using the notation of the proof of Theorem 2.5)

(Kn
i )† × Y

∐
(Kn

i )†×X
Q(n) ×X D

Q(n) × Y

Sp3 ×Y
∐

Sp3 ×X

∆3
♯ ×X D

∆3
♯ × Y

which admit solution in virtue of [Lur09a, Proposition 3.1.8]. The proof for the other functor is

almost analogous. First we note that the induced map Tw(X) → Tw(Y ) is a cofibration of marked

simplicial sets. Let A⋄ → B⋄ be a marked anodyne morphism, then using [Lur09, Prop. 3.1.2.3] we

see that lifting problems of the form

Tw(X)♯ ×B⋄ ∐
Tw(X)♯×A⋄

Tw(Y )♯ ×A⋄ Tw(D)†

Tw(Y )♯ ×B⋄ D × Dop

admit a solution. The claim follows immediately from this fact coupled with [Lur09, Cor. 2.4.6.5].

Proposition 4.5. Let Pi : Oi Set∆ with i = 1, 2, be two diagrams of simplicial sets such that

1) P1 is a cotower diagram such that for every ℓ → k in D1 the induced morphism P1(ℓ) → P2(k)

is a cofibration.

2) P2 is a pushout diagram such there exists a morphism a → b such that P2(a) → P2(b) is a

cofibration.

Denote by Xi the colimit of Pi and by {βj}j∈Oi
the canonical cone of Xi. Given F,G ∈ DXi then it

follows that we have equivalences of ∞-categories

Tw(DX)(F,G) ≃ holim
j∈Oop

i

Tw
(
D
Pi(j)

)
(β∗

j F,β
∗
jG)

, L(F,G) ≃ holim
j∈Oop

i

L(β∗
j F,β

∗
jG)

Proof. Observe that the functors Tw(D−) and L(−) preserve the ordinary limits of shape Oi. Since
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taking fibers commutes with limits we observe that it is enough to show that both diagrams are

injectively fibrant. This follows immediately from our hypothesis and Proposition 4.4.

Lemma 4.6. Let ι : Λni → ∆n be an inner horn inclusion. Then for every F,G ∈ D∆n
we have

equivalences of ∞-categories

Tw(D∆n
)(F,G)

≃
Tw(DΛn

i )(ι∗F,ι∗G), L(F,G)
≃

L(ι∗F,ι∗G).

Proof. First, let us observe that D∆n
→ DΛn

i is a trivial fibration in the scaled model structure.

After noticing this, the result follows immediately for Tw. To show the claim for the second functor

we just need to show that the inclusion ι : Tw(Λni ) → Tw(∆n) is cofinal. Then the result will follow

from the fact that restriction along ιop preserves limits. We left as an exercise to the reader this

last check, that follows easily from Quillen’s Theorem A.

Proposition 4.7. Suppose the map ΘX in Theorem 4.3 is an equivalence of Cartesian fibrations

for X = ∆n with n = 0, 1. Then for every X ∈ Set∆ the map ΘX is an equivalence of Cartesian

fibrations.

Proof. We will say that a simplicial set X satisfies the property (>) if ΘX is an equivalence of

Cartesian fibrations. First we will assume that the simplicial sets ∆n with n > 0 satisfy (>).

As a direct consequence of Proposition 4.5 2), we deduce that boundaries ∂∆n fullfil condition

(>) for n > 0. Let X be an arbitrary simplicial set. We claim that given n > 0 the n-skeleton skn(X)

satisfies (>). It is clear that the claim holds for sk0(X) since it is just a disjoint union of points.

Suppose that the claim holds for skl−1(X) and let I be the set of non degenerate simplices contained

in skl(X) \ skl−1(X). Given i ∈ I we can attach that non-degenerate simplex via a pushout square

∂∆l ∆l

skl−1(X) P
p

Proposition 4.5 implies that ΘP is an equivalence. Now let us pick a linear order on I and attach

one by one all the simplices in I. We can then produce a functor

P : I Set∆, such that colim
I

P ∼= skl(X).

which is an instance of Proposition 4.5 1) and therefore the inductive step is proved. The same

proposition now applied to X ∼= colimN skn(X) finally shows that ΘX is an equivalence of Cartesian

fibrations provided Θ∆n is an equivalence for n > 0.

We will use again induction to show that Θ∆n is an equivalence for n > 0. Our ground cases

are n = 0, 1. Now assume the claim holds for (n − 1) > 1 and pick an inner horn inclusion

ι : Tw(Λni ) → ∆. Then we have a commutative diagram

Tw(D∆n
)(F,G) (L∆n)(F,G)

Tw(DΛn
i )(ι∗F,ι∗G)

(
LΛn

i

)
(ι∗F,ι∗G)

≃ ≃

≃

where the vertical morphisms are equivalences due to Lemma 4.6. It is easy to see that the bottom
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horizontal morphism is an equivalence due to the induction hypothesis. The result follows from

2-out-of-3.

At this point we have made a drastic reduction in complexity and we are left to show that

the object ∆1 satisfies (>), the case of ∆0 being obvious. We will tackle this last case by a direct

computational approach. Before diving into the proof of Theorem 4.3 we will take a small detour to

analyze the relevant combinatorics. Throughout the rest of this section we will use the coordinates

a 6 b for ∆1 instead of the standard 0 6 1 notation. In a similar fashion, we the coordinates of

Tw(∆1) by ab → aa, ab → bb.

Definition 4.8. We define a cosimplicial object

R : ∆ Setsc
∆, [n] (R(n), T ),

R(n) = (∆n × ∆1) ⋆ (∆n × ∆1)op
∐

∆2n+1

(∆n × ∆1) ⋆ (∆n × ∆1)op

We describe the scaling using the notation of Remark 4.9. T is the scaling which is (1) identical

on the two summands and (2) such that the non-degenerate thin 2-simplices of the first summand

(∆n × ∆1) ⋆ (∆n × ∆1)op are those σ such that

• σ factors through either (∆n × ∆1) or (∆n × ∆1)op.

• ip < jq < kr is a simplex in ∆n × ∆1, and σ = (ip < jq < kr).

• kr < jq < ip is a simplex in ∆n × ∆1 and σ = (ip < jq < kr).

• i 6 j 6 k is a simplex of ∆n and

– σ = iab < jaa < ka;

– σ = kab < jaa < iab;

– σ = iaa < jaa < kab;

– σ = kab < jaa < iaa;

– σ = iab < jab < kaa; or

– σ = kaa < jab < iab.

Remark 4.9. We can describe the underlying simplicial set of R(n) as the nerve of a poset Rn as

follows

• The set of objects is given by symbols ℓε where ℓ ∈ [n] and ε ∈ {ab, aa, bb} together with their

formal duals ℓε.

• We declare ℓab 6 kε where ε ∈ {ab, aa, bb} if and only if ℓ 6 k. Dually we declare ℓab 6 kε if

and only if k 6 ℓ. Finally we declare ℓε < ℓε. The ordering on Rn is the minimal one generated

by the inequalities above.

We provide graphical representations of the posets for n 6 2:

Remark 4.10. We observe that the posets above come equipped with an isomorphism (Rn)op ∼= Rn
given by applying the “bar operator” (−). It is worth pointing out that our scaling is symmetric

with respect to this duality.
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R0

0aa 0ab 0bb

0aa 0ab 0bb

R1

0aa 0ab 0bb

0aa 0ab 0bb

1aa 1ab 1bb

1aa 1ab 1bb

R2

0aa 0ab 0bb

0aa 0ab 0bb

1aa 1ab 1bb

1aa 1ab 1bb

2aa 2ab 2bb

2aa 2ab 2bb

Figure 1: The posets Rn for n ≤ 2.

Definition 4.11. We define a cosimplicial object

Q : ∆ Setsc
∆, [n] Q(∆n × Tw(∆1)♯)

where Q was already introduced in Definition 2.1 and the functoriality is the obvious one. Since Q

preserves colimits we see that Q(n) splits into

Q(∆n × Tw(∆1)) ∼= Q(∆n × ∆1)
∐

Q(∆n)

Q(∆n × ∆1).

Remark 4.12. Recall that our definitions imply that a map Q(n) → D corresponds precisely to a

functor ∆n × Tw(∆1) Tw(D). We see that a simplex in L(F,G) is given by a map Q(n) → D

satisfying the obvious conditions after restriction to ∆n × Tw(∆1), (∆n × Tw(∆1))op ⊂ Q(n).

Definition 4.13. Let n > 0 and observe that R(n) fits into a cocone for the colimit defining

Q(n). Then the induced cofibrations εn : Q(n) R(n), assemble into map of cosimplicial objects

ξ : Q R.
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Definition 4.14. We define a cosimplicial object

T : ∆ Setsc
∆, [n] Q(n) × ∆1.

Remark 4.15. Analogously to Remark 4.12, we can identify a simplex ∆n → Tw(D∆1
)(F,G) with

a map T(n) → D such that the restrictions to ∆n × ∆1 and (∆n)op × ∆1 are constant on F and

Gop respectively.

Definition 4.16. Define a map of posets

µn : T(n) R(n), (ℓ, a) ℓab, (ℓ, a) ℓaa, (ℓ, b) ℓbb, (ℓ, b) ℓab

Then the maps µn assemble into a map of cosimplicial objects µ : T R.

Remark 4.17. At this juncture it is worth noting that the scaling on R(n) is the minimal scaling

such that ξ : Q R and µ : T R respect the scaling, and such that the scaling on R(n) has

the two symmetries previously mentioned.

Let us take a small break to put the previous definitions into perspective. We have defined three

cosimplicial objects R,Q and T, the last two of which define the simplices of the ∞-categories

Tw(D∆1
)(F,G) and L(F,G) respectively. The proof of Theorem 4.3 will rely on identifying R as an

interpolating cosimplicial object between Q and T. In the next proposition, we will show an equiv-

alence of cosimplicial objects between Q and R thus providing a key technical ingredient for the

proof of the main theorem. Readers unwilling to join us for this combinatorial ride can safely skip

the next proof.

Proposition 4.18. The map of cosimplicial objects ξ : Q R is a levelwise trivial cofibration

in the scaled model structure.

Proof. We will prove something stronger, namely, for every n > 0 the map ξn is scaled anodyne.

Using the description of both Q(n) and R(n) as pushouts, we deduce that it will suffice to show

that the map

Q(∆n × (∆1)♯)
(
(∆n × ∆1) ⋆ (∆n × ∆1)op

)
⋄

is scaled anodyne, where the subscript ⋄ indicates the scaling induced by that of R(n). Before

embarking upon the proof of our claim we will set some notation

Q(∆n × (∆1)♯) = An⋄ ,
(
(∆n × ∆1) ⋆ (∆n × ∆1)op

)
⋄

= Bn
⋄ .

Let (r, s) be a pair of non-negative integers such that r, s 6 n. We define a simplex

σ(r,s) : ∆2n+3 Bn
⋄

ℓ





ℓa if ℓ 6 r

ℓb if r + 1 6 ℓ 6 n+ 1

ℓb if n+ 2 6 ℓ 6 2n+ 2 − s

ℓa if 2n+ 3 − s 6 ℓ 6 2n+ 3

and note that Bn
⋄ =

⋃
(r,s)

σ(r,s). We further divide the simplices σ(r,s) into three families parametrized

by r − s = α. To illuminate our claims let us include some examples for n = 3.
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α > 0 α = 0 α < 0

0a 0b

0a 0b

1a 1b

1a 1b

2a 2b

2a 2b

3a 3b

3a 3b

0a 0b

0a 0b

1a 1b

1a 1b

2a 2b

2a 2b

3a 3b

3a 3b

0a 0b

0a 0b

1a 1b

1a 1b

2a 2b

2a 2b

3a 3b

3a 3b

σ(3,2) σ(2,2) σ(2,3)

We define B+
⋄ (resp. B−

⋄ , resp. B0
⋄) as the union of the simplices σ(r,s) such that α > 0 (resp.

α 6 0, resp. α = 0) with the induced scaling. It follows from unwinding the definitions that An⋄ = B0
⋄

and that B+
⋄ ∩B−

⋄ = B0
⋄ . We have thus produced a pushout square

An⋄ B+
⋄

B−
⋄ Bn

⋄ .
p

We turn now to show that An⋄ → B±
⋄ is scaled anodyne. First let us tackle the case α > 0. To this

end we produce a filtration

An⋄ = X0 X1 · · · Xn−1 Xn = B+
⋄

where Xj is the scaled simplicial subset consisting in those simplices contained in some σ(r,s) with

α 6 j. We claim that in order to show that Xj−1 → Xj is scaled anodyne it suffices to show that

top horizontal morphism f(r,s) in the pullback diagram below

W(r,s) ∆2n+3

Xj−1 X+
j .

f(r,s)

y σ(r,s)

is scaled anodyne with respect to the induced scaling. Indeed, we observe that given (r, s), (u, v)

such that r − s = u− v = j then it follows that σ(r,s) ∩ σ(u,v) ∈ Xj−1 and the claim follows. After

some contemplation we discover that

W(r,s) = dr(σ(r,s)) ∪ d2n+2−s(σ(r,s)).

Consequently we can define a dull subset consisting of the sets {r}, {2n+ 2 − s} with pivot point

2n + 2 − r. Using Lemma 1.10 we conclude that An⋄ → B+
⋄ is scaled anodyne.
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The case α < 0 is a formal dual of the case just proved. To see this we observe that the duality

on R(n) restricts to (B+
⋄ )op ∼= B−

⋄ and that our scaling is symmetric. The case α < 0 follows,

concluding the proof.

Corollary 4.19. Let D be an ∞-bicategory and let X be the simplicial set obtained via the cosim-

plicial object R. Consider the induced map

ξ∗ : X L∆1 .

Then the ξ∗ is a trivial Kan fibration. In particular, after passing to fibers we obtain an equivalence

of ∞-categories

X(F,G)
≃

L(F,G).

Proof. Note that as an immediate consequence of Proposition 4.18 we obtain an scaled anodyne

map ∂Qn → ∂Rn. Consider the morphisms

Q(n) Q(n)
∐

∂Qn

∂Rn R(n),

and note the last map is a trivial cofibration by 2-out-of-3. The reader will observe that the boundary

lifting problems are in bijection with lifting problems of the form

Q(n)
∐
∂Qn

∂Rn D

R(n)

and hence the result.

0aa 0ab 0bb

0aa 0ab 0bb

1aa 1ab 1bb

1aa 1ab 1bb

Figure 2: T(1) pictured in blue as a subset of R(1) under the inclusion µ1. The map ψ1 can be

alternately characterized as the unique map such that ψ1 ◦ µ1 = id and ψ preserves (−)
and its dual.

Construction 4.20. We define a map

R(n) Q(n)

by requiring ixy i and ixy i. We further define a map

R(n) ∆1
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by ixy x, ixy y. Note that both of these maps can be easily checked to preserve the

scalings. Together, they thus define a map ψn : R(n) T(n) such that ψn◦µn = id (see Figure 2).

Moreover, the ψn yield a natural transformation ψ : R → T. We denote by ψ∗ : Tw(D∆1
) X

the induced map.

Lemma 4.21. The diagram

Tw(D∆1
)

X L∆1

Θ∆1
ψ∗

ξ∗

commutes.

Proof. Left as an exercise to the reader.

Proof of Theorem 4.3. By virtue of Proposition 4.7, it will suffice to show that ΘX is an equivalence

of Cartesian fibrations for X = ∆n with n = 0, 1. The case n = 0 is obvious. To show the case n = 1

we observe that due to Corollary 4.19 and Lemma 4.21 it will suffice to show ψ∗ is an equivalence

of ∞-categories upon passage to fibers. We further note that since µ∗ ◦ ψ∗ = id it will be enough

to show that ϕ∗ = ψ∗ ◦ µ∗ is a fiberwise equivalence. Let σ : ∆n → ∆1 and let j ∈ [n] be the first

object such that σ(j) = 1 if σ is constant on 0 we set the convention j = n+ 1. Now we can define

a map of scaled simplicial sets

ϕ1
σ : R(n) R(n)

which leaves every object invariant except those of the form ℓaa with ℓ < j which are sent to ℓab.

Given ρ : ∆n → X(F,G) we define a simplex H(σ, ρ) : ∆n → X(F,G) given by the composite

R(n)
ϕσ

R(n)
ρ

D

This assignment extends to a homotopy H1 : ∆1 × X(F,G) X(F,G) which is component-wise

an equivalence. This exhibits an equivalence of morphisms id ∼
(
ϕ1

0

)∗
(F,G) where ϕ1

0 denotes the

previously defined map with respect with the constant simplex at 0.

Let σ : ∆n → ∆1. Then we define a map of scaled simplicial sets

ϕ2
σ : R(n) R(n)

that leaves every object invariant except those of the form ℓaa which are sent to ℓab and those of

the form ℓbb with ℓ < j with are sent to ℓab. We can now define, in perfect analogy to the situation

above, a natural equivalence H2 : ∆1 × X(F,G) X(F,G) between ϕ∗
(F,G) and

(
ϕ1

0

)∗
(F,G), hence the

result.

4.1 Application: weighted colimits of ∞-categories

We conclude this section (and thereby the paper) with several corollaries of Theorem 4.3, and their

application to the 2-dimensional universal property of weighted colimits. Because of the techni-

cal complexities shunted into the proofs of the properties of Tw(D), the proof of this 2-universal

property is extremely straightforward.

Throughout this section we will fix an ∞-category C and a pair of functors F : C Cat∞,

W : Cop Cat∞ that we will refer of as the diagram and the weight functors respectively. We

will denote by Cat∞ the ∞-bicategory of ∞-categories.

32



Definition 4.22. Let D be an ∞-bicategory. We say that the underlying ∞-category D is tensored

over Cat∞ with respect to D if for every d ∈ D the mapping functor MapD(d,−) has a left adjoint

− ⊗ d : Cat∞ → D; in this case these adjoints determine an essentially unique functor Cat∞ ×D →

D.

Corollary 4.23. Let D be an ∞-bicategory such that the underlying ∞-category D is tensored over

Cat∞ with respect to D. Then for every ∞-category C the functor category DC is tensored over Cat∞

with respect to DC.

Proof. Combine Theorem 4.3 with [GHN15, Lem. 6.7].

Corollary 4.24. Let C be an ∞-category and let E C, E′ C be Cartesian fibrations. We

denote by Funcart
C (E,E′) the ∞-category of maps of Cartesian fibrations. Then there is a natural

equivalence of ∞-categories

Funcart
C (E,E′)

≃
NatC(St(E),St(E))

where St denotes the straightening functor.

Proof. Combine Theorem 4.3 with [GHN15, Prop. 6.9].

Remark 4.25. It is worth noting that Corollary 4.24 can be interpreted as very compelling evidence

suggesting that an enhanced version of the straightening functor St, will yield an equivalence of

∞-bicategories between the category of Cartesian fibrations over C and the category of Cat∞-valued

functors on C.

Recall that in [GHN15, Def. 2.7], the authors define the weighted colimit of F with weight W as

the coend

colim
Tw(C)

W × F.

According to this definition the universal property of the weighted colimit is purely 1-dimensional.

Our aim in this section is to show that the previous definition is just a shadow of a bicategorical

universal property and thus find a bridge between the classical theory of weighted colimits in

2-categories and the realm of ∞-bicategories.

Definition 4.26. The weighted colimit of F with weight W is the unique (up to equivalence)

∞-category representing the functor

Cat∞ CatCatop
∞

∞ CatC
op

∞ Cat∞
Y F ∗ NatCop (W,−)

where Y denotes the bicategorical Yoneda embedding.9 We will denote weighted colimit by W ⊗F .

More compactly, this definition means that there is an equivalence NatCop(W,Fun(F (−),X)) ≃

Fun(W ⊗ F,X), natural in X.

Remark 4.27. This definition of weighted colimits was already considered in more generality in

[AG20].

9We are here ignoring some substantial set-theoretic complexities. We should, more properly, fix a nested pair of
Grothendieck universes, and consider variants of Cat∞ based on size. In the interest of concision, we will sweep
such set-theoretic concerns under the rug, leaving their contemplation to the interested reader.
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Theorem 4.28. Consider a pair of functors F : C Cat∞, W : Cop Cat∞. Then there is

an equivalence of ∞-categories

W ⊗ F
≃

colim
Tw(C)

W × F.

Proof. Let X be an ∞-category. We trace out a chain of equivalences, natural in X. By Theorem 4.3,

we have

NatCop(W,Fun(F (−),X)) ≃ lim
Tw(C)op

Fun(W (−),Fun(F (−),X)).

A standard chain of manipulations then yields

lim
Tw(C)op

Fun(W (−),Fun(F (−),X)) ≃ lim
Tw(C)op

Fun(W (−) × F (−),X)) ≃ Fun

(
colim
Tw(C)

W × F,X

)

so that colim
Tw(C)

W × F satisfies the universal property defining W ⊗ F , completing the proof.
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