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Abstract. We suggest a novel shape matching
algorithm for three-dimensional surface meshes of
disk or sphere topology. The method is based on
the physical theory of nonlinear elasticity and can
hence handle large rotations and deformations. De-
formation boundary conditions that supplement the
underlying equations are usually unknown. Given
an initial guess, these are optimized such that the
mechanical boundary forces that are responsible for
the deformation are of a simple nature. We show
a heuristic way to approximate the nonlinear opti-
mization problem by a sequence of convex problems
using finite elements. The deformation cost, i.e., the
forces, is measured on a coarse scale while ICP-like
matching is done on the fine scale. We demonstrate
the plausibility of our algorithm on examples taken
from different datasets.

1 Introduction

1.1 Motivation
Shape matching is a difficult but nonetheless
important problem in computer vision, medical

imaging, and computer graphics. It is the key
ingredient for recognition, retrieval, alignment
of scanned data, information transfer, shape in-
terpolation, statistical shape modeling, space-
time reconstruction and more.
This work aims to contribute a novel frame-

work to solve for unknown shape deformations
of a pair of two-dimensional surfaces (source and
target) in three dimensions. Our method is built
on the observation that in applications surfaces
often represent the boundaries of actual physi-
cal entities, i.e., surfaces of elastic bodies. Shape
change can therefore be explained by means of
forces acting on the specific elastic body. Their
magnitude can be interpreted as a measure of
how “difficult” it is to achieve a certain shape
change. Elastic models are, we believe, well
suited to give valuable information about shape
changes among different objects. In particular,
we believe, that sparsity of forces is a good prior
for explaining an observed deformation within a
semantic class of objects, e.g., if we were to com-
pare two different shape articulations.
From a mathematical point of view shape

matching is an ill-posed inverse problem and is
usually tackled in a heuristic manner. It is com-
putationally challenging since the search space
for correspondences is usually large. Hence,
there is a need to explore this search space in
a reasonable manner.

1.2 Our Method

In [45] the authors intuitively describe the de-
sired shape blending algorithm as one which re-
quires the least work to deform through bend-
ing and stretching. Many shape matching algo-
rithms are designed in this spirit as one usually
seeks “maximum alignment by means of mini-
mal cost” in an optimization framework. Our
work uses the physical theory of nonlinear elas-
ticity and is based on the same principle as will
be elaborated in the following.
In this work we suggest a method for align-

ing two surface meshes (manifolds) embedded in
three-dimensional space. We use the observa-
tion that surface meshes often represent (parts
of) the boundaries of actual physical bodies.
Hence, the cost of a deformation of a surface
can be measured by forces acting on the bound-
ary of the solid body described by the surface.
We believe that in many realistic scenarios

even complicated deformations take place due
to or can be explained by means of surpris-
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ingly simple forces. Examples are the change
of a pose of an animal or a human where forces
act mainly only on the articulated parts, i.e.,
the acting forces can be regarded as sparse. We
furthermore anticipate that, given two semanti-
cally similar objects, seeking a deformation that
is subject to sparse and isotropic surface forces
is a reasonable strategy to match them. These
forces could then be used to intuitively compare
two different deformations and to assess their
severity.
The underlying equations of nonlinear elas-

ticity that we employ form a system of nonlin-
ear partial differential equations (PDEs) and are
subject to boundary conditions. These can be
given as deformations and/or forces prescribed
on the boundary of the body. Given two shapes
boundary conditions of either type are usually
unknown but one can often give an initial guess
of boundary correspondences, i.e., of the bound-
ary deformation. Such an initial guess can then
be optimized according to our prior on the forces
to obtain a “better” set of boundary correspon-
dences that supplement the PDE. The initial
guess plays the role of a spring force between
source and target shape and a penalty needs to
be paid for deviation. The optimized bound-
ary correspondences can then be used to solve
the underlying elasticity PDE using a common
Newton-Raphson scheme to update the full vol-
umetric deformation of the body and the entire
procedure can be iterated until a good match is
found.
Using the popular finite element method

(FEM) we show how to connect the boundary
deformation to the boundary forces by means
of a splitting of the tangent stiffness matrix, lo-
calized around a certain deformation. This so-
called condensation is necessary to reduce the
optimization to the boundary of the body and
has the advantage that it lowers the dimen-
sion of the optimization significantly. Further-
more, the condensation allows us to formulate
the problem as a sequence of (convex) second
order cone problems.
As elaborated above we aim to match surfaces

represented by triangular meshes but the FEM
works on volumetric meshes. Hence, we create
a tetrahedral mesh of the body represented by
the triangular mesh. The surface meshes that
we match in our examples have between 9000
to 55000 triangles and constructing a tetrahe-
dral mesh that resembles the surface density of
meshes would result in a computationally very

large problem. Therefore, we create a coarse
tetrahedral approximation of the surface. Every
point on the surface mesh can then be coupled
to the coarse boundary mesh of the volumetric
mesh. A deformation of the coarse boundary
then induces a deformation of the surface. This
way we can prescribe a matching (in particu-
lar the initial guess) on the surface mesh while
measuring the deformation cost on the coarser
volumetric mesh.

1.3 Previous Work

1.3.1 Overview

An optimization based shape matching algo-
rithm usually consists of two ingredients. First,
one needs a regularizer that determines (the
preference of) the class of deformations in con-
sideration. Well investigated is the field of rigid
matching, i.e., the admissible transformations
are translations and rotations [1, 25, 39]. This
is a common scenario if one is given a range
scan of rigid objects that can be aligned with
a single rigid transform. For non-rigid match-
ing common regularizers that are used in the
literature are the popular As-Rigid-As-Possible
(ARAP) functional [2] and the As-Affine-As-
Possible (AAAP) functional [30, 33]. Both are
often combined in one objective function. For
a set of correspondences AAAP measures the
deviation from a global affine transform and
hence favors smooth deformations. ARAP lo-
cally measures the deviation from a rigid trans-
form and is related to elasticity since it mimics
mechanical stiffness. These methods work on
tetrahedral meshes, i.e., they need volumetric
meshes that represent the shape. In the con-
text of surfaces recent ARAP-like methods have
been introduced in [47, 32].
Elastically deformable models in graphics

have been pioneered in the end of the 1980s
in [50]. Generally speaking, these models use
characterizing properties of geometric objects
(curves, surface, volumes) to define functionals
that penalize deviation from them. A curve in
three dimensions, for example, is fully charac-
terized (up to rigid motion) by two parameters,
its curvature and its torsion and hence a motion
of the curve that changes one of them is con-
sidered a deformation of the curve. For a vol-
ume it is the local isotropic change of lengths
that characterizes a deformation (up to rigid
motion). This principle is reflected in the physi-
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cal theory of (nonlinear) elasticity [6, 18]. In the
context of shape matching deformation models
that borrow ideas from elasticity can be found
in [23], where the authors use linear elasticity
for the registration of three-dimensional medical
images, as well as in [16] for fitting solid meshes
to animated surfaces. In [17] a thin-plate spline
regularizer is used for point matching. Non-
linear elasticity is employed in [41] for medical
imaging and in [43] where two-dimensional elas-
ticity is employed for three-dimensional surface
matching via mesh parametrization. However,
there is a vast amount of (physical) deforma-
tion methods and we do not aim at discussing
them in detail. An overview of methods used
in graphics can be found in [38] and techniques
used in vision and medical imaging in [27].

The second ingredient for a shape matching
method is a data term that drives the defor-
mation and/or describes dissimilarity between
source and target shape. One way is to ran-
domly sample candidate correspondences and
to choose a deformation that best aligns the
data. These RANSAC methods, which were
first introduced in [24], are practical for low-
dimensional mapping spaces. Recently they
were extended to deal with deformation spaces
of higher dimension [35].
Another popular group of methods comprises

variants of the famous iterative closest point
(ICP) algorithm, first introduced in [8, 15]. This
iterative approach was first used for rigid match-
ing and is well suited for various representations
of geometric data. It is based on the computa-
tion of closest points between source and target.
Since then efficient methods have been devel-
oped that use different sampling of correspon-
dences, different weighting schemes that deter-
mine the confidence of a candidate match etc.,
see [39, 16, 30]. Recently, ICP has been ap-
plied as well in the context of non-rigid match-
ing [3, 12, 14, 28]. Some of these papers deal
with deformations of significant magnitude.
Techniques like multi-dimensional scaling

(MDS) and generalized multi-dimensional scal-
ing (GMDS) aim to find correspondences by
regarding the shapes as Riemannian manifolds
and try to find an embedding in a common met-
ric space [12, 13]. Correspondences are then
found in the common embedding space (which
can even be a high-dimensional Riemannian
manifold in the case of GMDS) rather than be-

tween the shapes themselves. This way ICP can
be regarded as an instance of the Euclidean iso-
metric matching problem. MDS and GMDS are
elegant methods but computationally costly.
We note, however, that the vast literature and

number of techniques can be classified also by
other criteria. An excellent overview of the field
and of classification criteria can be found in the
survey paper [29].

1.3.2 Comparison

This work extends our work in [46] to three di-
mensions and large deformations. By favoring
sparse forces as explanations for elastic deforma-
tions we use the same prior that we used in [46].
There we deal with small planar deformations.
The forces there are invariant under infinitesi-
mal rotations only, due to the use of linear elas-
ticity and are, in particular, not invariant under
general rotations.
In [16] the authors employ an enhanced ver-

sion of linear elasticity by the use of rotation
compensation, similar to co-rotated linear elas-
ticity. This way they can deal with large rota-
tions but this requires a large number of low di-
mensional singular value decompositions in each
iteration, whereas we solely update the tangent
stiffness matrix computed by the FEM. Another
difference is that in our method the optimized
boundary forces can be made rotation invariant
once a matching deformation is found, and it
is theoretically suitable for very large deforma-
tions.
The splitting of the tangent stiffness matrix

that we employ to connect boundary forces and
boundary displacements was previously used
in [11] in the context of surgery simulation and
in [46] for matching. The technique that we
propose generalizes this idea to the nonlinear
case and allows us to reduce the (nonlinear)
matching problem to solving a sequence of con-
vex problems that we formulate as second or-
der cone problems while simultaneously reduc-
ing the computational complexity.
In our algorithm, the computational complex-

ity, i.e., the degrees of freedom to be optimized,
is furthermore reduced by measuring the defor-
mation cost, i.e., the elastic forces, on a (coarse)
tetrahedral mesh that is needed by the FEM.
The corresponding deformation is then extended
to the (fine) triangular surface mesh. Similar
ideas have used in [30, 33, 48]. Furthermore,
changing the coarseness of the tetrahedral mesh

3
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gives the user control over the computational
complexity of the FEM part of the model while
the coarseness of the surface mesh is fixed.
The matching and the computation of the ini-

tial guess is done on the fine scale of the sur-
faces. We project the source points onto the
target favoring similar points (descriptor aided)
during the first few iterations and then switch
to Euclidean projection once a better alignment
is reached. This way one can regard our method
as a two-scale version of a non-rigid ICP-like al-
gorithm since the matching is done on the fine
scale while the cost, i.e., the boundary forces, is
measured on the coarse scale of the volumetric
mesh.

The paper is organized as follows. In Section 2
we give a concise overview of the model of a hy-
perelastic body and describe a nonlinear FEM
that is used in the optimization procedure. The
optimization is described in detail in Section 3.
Experiments, implementation details and a de-
scription of the two-scale algorithm are given in
Section 4. Section 5 concludes with a discussion.

2 Model and Numerical
Methods

2.1 Hyperelasticity

The purpose of this section is to introduce the
reader into the most important principles of
nonlinear elasticity theory that are relevant in
the sequel. As mentioned, our model optimizes
elastic forces and hence it is important to un-
derstand what forces we refer to and how they
act. Nonlinear elasticity is a well developed and
complex field. Mathematically oriented intro-
ductions can be found in [6, 18, 10] and an en-
gineering oriented introduction in [20].
Roughly speaking an elastic body is an open

connected subset B ⊂ R3 that reacts to applied
forces with a deformation. It returns to its rest
state (also called reference configuration) after
the forces are removed and does not memorize
previous deformations. The main equations of
nonlinear elasticity describe a balance between
the applied forces that cause the deformation
and the internal force distribution inside the de-
formed body (stress) in the spirit of Newton’s
second law. We will elaborate on this in the
following.

Stress, Forces and Equilibrium. We as-
sume that we are given an elastic body in its
rest pose B ⊂ R3, i.e., the rest pose is the vol-
ume that is occupied by the body when no forces
are applied to it. A deformation of the body is
described by a locally injective and smooth vec-
tor field Φ : B → R3, i.e., any point x ∈ B in
the reference configuration has a corresponding
point xΦ := Φ(x) ∈ BΦ := Φ(B) in the deformed
configuration. Any deformation should satisfy
det(∇Φ) > 0, i.e., subsets of B of positive mea-
sure are mapped to subsets of BΦ of positive
measure.
Suppose now that the rest state B is subject

to forces that describe the action of the out-
side world on it. These can either be volumetric
forces fΦ, i.e., they are measured by per unit
volume of the deformed configuration, or they
can be surface forces gΦ measured per unit sur-
face area acting on ∂BΦ. Examples for volu-
metric forces are gravity or electric field forces,
whereas examples for surface forces are pres-
sure or spring forces. The resulting deforma-
tion Φ induces an internal force distribution
tΦ : BΦ × S2 → R3 inside BΦ that balances
the external forces, the so-called Cauchy trac-
tion vector. This vector field depends on two
arguments since it measures the force per unit
area acting through any cross section of BΦ de-
scribed by its unit normal nΦ ∈ S2 at xΦ ∈ BΦ.
This can be expressed through a linear relation
t(xΦ, nΦ) = TΦ(xΦ)nΦ where TΦ : BΦ → R3×3

is the Cauchy stress tensor. Its rows represent
the three tractions (normal and shear stresses)
in three coordinate planes which are usually the
three orthogonal canonical planes, see Figure 1
for an illustration. In particular, if xΦ ∈ ∂BΦ

and nΦ ∈ S2 is its corresponding outward unit
normal, then tΦ(xΦ, nΦ) is the force gΦ acting
on the boundary of BΦ at this specific point.
Boundary forces will be of importance in the
sequel for the formulation of our optimization
problem.
The basic equations governing elasticity the-

ory can now be formulated as follows (Cauchy
principle): Let the volumetric forces be denoted
by fΦ : BΦ → R3 and let V ⊂ BΦ be an arbi-
trary subvolume. Then∫

∂V
tΦ(xΦ, nΦ) dSΦ+

∫
V
fΦ(xΦ) dxΦ = 0. (1)

This equilibrium of external forces and internal
stress is an expression of Newton’s second law

4



November 6, 2018 Nonlinear Force Optimization for Shape Matching

Figure 1: Left: an illustration of a surface force tΦ(xΦ, nΦ) at some point xΦ in an arbitrary cross section with normal
nΦ of a body BΦ. Right: illustration of the three components of the Cauchy stress tensor σ = TΦ with respect to the
canonical coordinate planes. The normal stress is orthogonal to the considered plane shear stresses lie within the plane.

and holds in the deformed configuration BΦ. A
similar principle for the angular moments shows
in addition that TΦ must be symmetric. Using
the above and the divergence theorem we get∫

V

(
divΦ TΦ(xΦ) + fΦ(xΦ)

)
dxΦ = 0 . (2)

Since this holds for all subvolumes V the equi-
librium equations can be written in differential
form as

−divΦ TΦ(xΦ) = fΦ(xΦ) , xΦ ∈ BΦ ,

TΦ(xΦ)nΦ = gΦ(xΦ) , xΦ ∈ ∂BΦ
(3)

where gΦ is a boundary force as described above.

Unfortunately, this is not practical yet since
equation (3) holds in the deformed configuration
which is unknown. This can be remedied by a
pullback to the reference configuration B. The
main tool for this is the so called Piola transform
given by:

T (x) = det(∇Φ(x))TΦ(xΦ)∇Φ(x)−T . (4)

It describes a transition from the Eulerian vari-
able xΦ = Φ(x) to the Lagrangian (reference)
variable x. The quantity T is called the first
Piola-Kirchhoff stress tensor. It measures stress
on the deformed configuration per unit area of
the undeformed configuration and it is not sym-
metric. The Piola transform also transforms op-
erators and forces in (3) so that the equilibrium
equations in the reference configuration B take

the form

−div T (x) = f(x) , x ∈ B ,
T (x)n = g(x) , x ∈ ∂B .

(5)

The exact relations between the forces is given
by

f(x) = (det∇Φ(x))fΦ(xΦ) ,

g(x) = (det∇Φ(x))
∥∥∇Φ(x)−Tn(x)

∥∥ gΦ(xΦ) .

(6)

This means that the transformed forces in gen-
eral depend on the deformation Φ and its gra-
dient even though this might not be the case
for fΦ and gΦ. The interested reader is referred
to [18]. The second Piola-Kirchhoff stress ten-
sor, given by

Σ(x) = ∇Φ(x)−1T (x) , (7)

is symmetric and measures stress on the unde-
formed configuration per unit area of the un-
deformed configuration. Equation (5) can be
rewritten in terms of Σ as

−div (∇Φ(x)Σ(x)) = f(x) , x ∈ B ,
Σ(x)n = g̃(x) , x ∈ ∂B

(8)

where g̃(x) = ∇Φ(x)−1g(x). However, we will
use (5) as a basis for discretization and opti-
mization.

Constitutive Laws. The above given equa-
tions describe equilibria of external and inter-
nal forces but they do not take into account the

5
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different reactions of materials to forces. Obvi-
ously, steel reacts with a different deformation
than rubber when exposed to the same external
forces. Or, conversely, rubber and steel under-
going the same deformation is caused by differ-
ent forces. These material specific relations be-
tween force and induced deformation are mod-
eled by so-called constitutive laws and shall be
described briefly in the following.

Roughly speaking, a material is called elas-
tic if the Cauchy stress TΦ can be written as
a function of x ∈ B and ∇Φ. With respect
to (4) and (7) we can call a material elastic if
its first and second Piola-Kirchhoff stresses are
functions of x ∈ B and ∇Φ only. Such a func-
tion is called a response function. This defini-
tion allows a large class of response functions
and can be restricted further by making reason-
able physical assumptions. A common physical
principle is the principle of frame indifference
meaning that any observed quantity is indepen-
dent of the observer. Furthermore, one can as-
sume the independence of the material response
on x ∈ B. This is called homogeneity. Another
restriction of the class of admissible response
functions is the isotropy of the material which
essentially means that the materials’ response
at any point x ∈ B is the same and is inde-
pendent of the direction in which the force is
applied. Steel is an isotropic material in con-
trast to wood which deforms differently in the
direction of its fibers than orthogonal to them.
Combining all these assumptions one can show
that the Cauchy stress and the second Piola-
Kirchhoff stress are of the form

TΦ(xΦ) = T̃ (∇Φ(x)∇Φ(x)T ) (9)

and
Σ(x) = Σ̃(∇Φ(x)T∇Φ(x)) . (10)

Note that both functions, T̃ and Σ̃ are invariant
under rigid motions. The first Piola-Kirchhoff
stress, in contrast, can not be expressed in a
form depending only on ∇ΦT∇Φ. Nonetheless,
T appears in the governing equations (5) and
so the forces f, g, in contrast to g̃ appearing
in (8), are not invariant under rotations. How-
ever, with regard to (7) the difference is just a
factor of ∇Φ−1. From now on we will not distin-
guish between the stress tensors T,Σ and their
response functions T̃ , Σ̃ and we introduce the
notations F = ∇Φ and C = FTF for the sake
of brevity. Note that C, called Green strain, is

the quantity that describes the local change of
distances of nearby points (a Taylor expansion
of ‖Φ‖2 can easily show this). Furthermore, one
can show that two deformations of a body that
have the same Green strain differ from one an-
other by a rigid motion only. Hence, two defor-
mations of the same body can be identified if
they have the same Green strain.

Suppose now, that the first Piola-Kirchhoff
stress is the derivative of a stored energy func-
tion Ŵ (F ), i.e.,

T (F ) =
∂Ŵ

∂F
(F ) . (11)

A material with this property is called hypere-
lastic. Hyperelastic materials are advantageous
for two main reasons. First, if also the forces
in (6) are conservative, i.e., they can be written
as the Gâteaux derivative of some potential, the
equations of equilibrium (5) can be written as a
minimization problem. Since the forces will be
unknown in our optimization problem this will
be less important to us. The second advantage
is that they allow a much more intuitive mod-
eling of energetic penalties to certain kinds of
deformations (e.g., non-isochoric deformations)
rather than a direct modeling via the response
function.

The materials that we will use in the sequel
are homogeneous and isotropic but before for-
mulating their stored energy functions recall the
principal invariants of a matrix A ∈ R3×3:

i1(A) = trA ,

i2(A) = tr Cof A , and
i3(A) = detA ,

(12)

where trA is the trace and Cof A = (detA)A−T

is the cofactor matrix (for invertible A). In
terms of eigenvalues the principal invariants can
be written as

i1(A) = λ1 + λ2 + λ3 ,

i2(A) = λ1λ2 + λ2λ3 + λ1λ3 , and
i3(A) = λ1λ2λ3 .

(13)

The so-called reduced principal invariants are
given by

I1(A) = i3(A)−1/3i1(A) ,

I2(A) = i3(A)−2/3i2(A) , and

J(A) = i3(A)1/2 .

(14)

6
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For isotropic hyperelastic materials Ŵ can be
formulated in terms of the (reduced) princi-
pal invariants of the Green strain C only. We
will make use of two hyperelastic materials in
this work. The stored energy function of Saint
Venant-Kirchhoff materials (SVK) is given by

ŴSVK = µ(i1(C)− 3) +
λ+ 2µ

8
(i1(C)− 3)2

− µ

3
(i2(C)− 3)

=
λ

2
(trE)2 + µ tr(E2)

(15)

where 2E = C − I, C = FTF , and λ, µ ≥ 0
are the Lamé constants. SVK materials are
linear material models since the second Piola-
Kirchhoff stress is a linear function of E (C re-
spectively):

Σ(E) = λ(trE)I + 2µE . (16)

A linearization of E yields the well known Hooke
law of linear elasticity which is also called “small
deformation-small strain setting”. Their poten-
tial function is given by

ŴLinear =
λ

2
(tr ε)2 + µ tr(ε2) , (17)

where 2ε = (F + FT ) − 2I. SVK materials,
however, can be shown to be first order approx-
imations of isotropic materials in terms of E and
therefore this model is called “large deformation-
small strain”.
Neo-Hookean materials have a stored energy

function of the form

ŴNEO = α(I1(C)− 3) + β(J(C)− 1)2 (18)

where α, β > 0 are positive constants and
are used to model rubber and elastomers [20].
Sometimes different variants of the term involv-
ing J are described in the literature. The use
of the reduced invariants ensures the positivity
of the stored energy. This model is the simplest
model that is appropriate for large strain and
large deformations. Using (11) equation (5) can
be rewritten for a general hyperelastic material
as

−div
∂Ŵ

∂F
(∇Φ) = f(x) , x ∈ B ,

∂Ŵ

∂F
(∇Φ)n = g(x) , x ∈ ∂B .

(19)

2.2 Discretization Using FEM

Equation (19) is essentially a system of nonlin-
ear partial differential equations (PDEs) with
pure Neumann boundary conditions. Usually,
this system is additionally supplemented with
Dirichlet boundary conditions that prescribe the
deformation of B on (parts of) its boundary. For
now, we will not take into account the Dirich-
let boundary conditions but later we will make
a connection between the boundary forces and
the deformation on the boundary.

System (19) is commonly discretized by
means of the finite element method (FEM) [10,
20, 31]. Applying the FEM to nonlinear elas-
ticity problems is in general not straightfor-
ward. For incompressible or nearly incompress-
ible problems, i.e., the volume change during the
deformation is zero or very small, mixed FEMs
need to be employed. However, in this work
we will avoid this difficulty and allow volume
changes. For the purpose of comparing shapes
differing by an unknown deformation (due to
unknown forces) this is a reasonable assump-
tion and therefore it is possible to simply employ
piece-wise linear FEMs. We shall elaborate on
this in the following.

FEMs rely on the variational form of the
PDE, i.e., we multiply the first equation in (19)
with a test function Ψ in a space V of suit-
ably smooth test functions and integrate the
left-hand side by parts. Then one looks for a
solution Φ ∈ V such that∫

B

∂Ŵ

∂F
(∇Φ) : ∇Ψ dx =

∫
B
f ·Ψ dx

+

∫
∂B
g ·Ψ dS ∀Ψ ∈ V . (20)

where A : B := tr(ATB) denotes the Frobenius
scalar product. V is usually some Sobolev space
that encodes the Dirichlet boundary conditions
and regularity requirements on ∇Φ. We will,
however, not get into the details of the analytical
treatment of (20) which can be found in [18, 31].

In order to find an approximate solution
FEMs replace the function space V by a finite
dimensional subspace V h. The function space
V h includes an approximation Bh of the domain
B. The problem is then to find Φh ∈ V h such

7
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that∫
Bh

∂Ŵ

∂F
(∇Φh) : ∇Ψhx. =

∫
Bh

f ·Ψh dx

+

∫
∂Bh

g ·Ψh dS ∀Ψh ∈ V h . (21)

This problem is nonlinear in the deformation Φh

and can be solved given appropriate boundary
conditions by Newton-Raphson type methods
which require linearization. Let Φh0 ∈ V h be a
given deformation. Then, the linearized version
of (21) around Φh0 is given by

∫
Bh

∂Ŵ

∂F
(∇Φh0 ) : ∇Ψh dx

+

∫
Bh

(
∂2Ŵ

∂F 2
(∇Φh0 )(∇Φh −∇Φh0 )

)
: ∇Ψhx.

=

∫
Bh

f ·Ψh dx+

∫
∂Bh

g ·Ψh dS ∀Ψh ∈ V h .

(22)

Note that the second derivative of Ŵ with re-
spect to the deformation gradient is a tensor of
fourth order. A system of this type has to be
solved in each step of a Newton-Raphson proce-
dure.

Next, in order to get to a more concrete repre-
sentation, we choose a global basis of the finite
dimensional space V h, (Ψl

i)
l=1,...,3
i=1,...,N , so that test-

ing (22) with all functions of V h is equivalent to
testing against all base functions. We make the
ansatz

Φh = ΦliΨ
l
i , i = 1, . . . , N , l = 1, 2, 3 , (23)

with real coefficients Φli whereas we use Ein-
stein’s sum convention. Note that the base func-
tions are vector valued and l stands for the index
of their relevant component. Let furthermore
Φh0 = Φl0,iΨ

l
i be the expansion of Φh0 in the basis

of V h. Plugging all this into (22) we get

∫
Bh

∂Ŵ

∂F
(∇Φh0 ) : ∇Ψm

j dx

+
(
Φli − Φl0,i

) ∫
Bh

(
∂2Ŵ

∂F 2
(∇Φh0 )∇Ψl

i

)
: ∇Ψm

j dx

=

∫
Bh

f ·Ψm
j dx+

∫
∂Bh

g ·Ψm
j dS . (24)

This is a linear equation for the nodal deforma-

tions Φli of the form

bΦ0
(Ψm

j ) + ΦliaΦ0
(Ψl

i,Ψ
m
j ) = f̂(Ψm

j ) + ĝ(Ψm
j )

∀j = 1, . . . , N , m = 1, 2, 3 . (25)

Here bΦ0
corresponds to the term of zero order

of the linearization of (21) and aΦ0 is a bilinear
form, corresponding to the first order term of
the linearization, whose representation matrix
in terms of the FEM base functions is called the
tangent stiffness matrix. The right-hand side
represents a force term.
As mentioned above, we use piece-wise linear

finite elements to approximate Φh. For this pur-
pose the approximate geometry Bh is a tetrahe-
dralization of B. A linear function in each tetra-
hedron (tet) is then uniquely determined by its
nodal values. A set of global base functions is
defined by the relation

Ψl
j(xk) = δjke

l , j, k = 1, . . . , N , (26)

where el is the l-th canonical base vector, l =
1, . . . , 3, and xk are the nodes of Bh. Using this
we can characterize V h as

V h =
{

Ψ ∈ C0(Bh,R3) |Ψ is linear

in each tet of Bh
}
. (27)

This way each coefficient Φli in equation (23)
can be interpreted as the l-th component of the
deformation vector at the node xi of the tessella-
tion Bh. Note, that the discretization introduces
two errors, the error due to the approximation
of Φ ∈ V , and an error that is caused by the
approximation of the geometry B.

3 Optimization of Boundary
Conditions

In this section we will give a detailed descrip-
tion of the optimization procedure that we use
to tackle the matching problem. We will show
how to approximate this nonlinear problem by
a sequence of convex problems that can be put
in the form of a second order cone program
(SOCP).
Our goal is to match two two-dimensional sur-

face meshes, the source S and the target T , de-
viating from one another by an unknown defor-
mation Φ. Very often these surfaces represent
the surface of actual physical entities like solid

8
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bodies. In order to deform solid bodies an ex-
ternal force is necessary. As stated in the intro-
duction, the external forces we are seeking are
simple, i.e., sparse and isotropic and act on the
boundary of the physical body B only. These
forces are a priori unknown as well as the de-
formation of the surface itself. But we can put
them in relation using the FEM, as we will show
in the sequel. The optimization problem of find-
ing the deformation can be formulated as follows

minimize
Φ

∫
∂B

∥∥∥∥∥∂Ŵ∂F (∇Φ)n

∥∥∥∥∥
2

dS

subject to div
∂Ŵ

∂F
(∇Φ) = 0 , x ∈ B

Φ(∂B) = T ,

(28)

i.e., we are imposing elastic properties on the
source S = ∂B and then we are seeking an elas-
tic deformation Φ of B such that the external
forces that are responsible for the deformation
of S into T are minimal. The objective in (28) is
essentially an L1-cost on the force. Note that we
assume a pure boundary force and no volumet-
ric forces. The force term we optimize in the ob-
jective function of (28) is measured by the first
Piola-Kirchhoff stress tensor, see equation (11).
They are acting on the deformed configuration
but are measured per unit area in the reference
configuration. Hence, the objective is not in-
variant under rotation. This, however, is not a
limitation because one can simply take the re-
sult of the optimization (28) and apply transfor-
mation (7) to get rotation invariant forces that
are measured and acting on the reference con-
figuration. This way one can identify two de-
formations that deviate from one another by a
Euclidean transform.
Unfortunately, the optimization problem (28)

is nonlinear due to the second constraint and
due to the nonlinearity of material models. We
will show a way to approximate it by a sequence
of simpler and, most importantly, convex prob-
lems.
In contrast to the boundary forces one can

often give a rough guess Φ∗ of surface corre-
spondences between the surface meshes to be
compared. Again, regarding the source mesh S
as the boundary of a physical body this guess
of correspondences induces a boundary force on
∂B. This boundary correspondence can then be
optimized according to our prior that the in-
duced forces are sparse and isotropic. This way

we get a deformation of S that is caused by
sparse forces and is “closer” to the target and
we can re-iterate the process. In each step we
have to solve a nonlinear optimization problem
which can be formulated as

minimize
Φ

∫
∂B

(∥∥∥∥∥∂Ŵ∂F (∇Φ)n

∥∥∥∥∥
2

+
k

2
‖Φ− Φ∗‖22

)
dS

subject to
∫
B

∂Ŵ

∂F
(∇Φ) : ∇Ψ dx =∫

∂B

∂Ŵ

∂F
(∇Φ)n ·Ψ dS

∀Ψ ∈ V .

(29)

This way we eliminate the second constraint
in (28) by localizing the optimization around
the initial guess Φ∗. The new term in (28) can
be interpreted as a spring force with spring con-
stant k, measuring deviation from the estimated
correspondences, that needs to be balanced by
sparse elastic forces. Note that we also replaced
the PDE constraint in (28) by its variational
form (20).

Problem (29) can be given a discrete formu-
lation using equation (21), i.e.,

minimize
Φ

∫
∂Bh

(∥∥∥∥∥∂Ŵ∂F (∇Φh)n

∥∥∥∥∥
2

+
k

2

∥∥Φh − Φh,∗
∥∥2

2

)
dS

subject to
∫
Bh

∂Ŵ

∂F
(∇Φh) : ∇Ψh dx =∫

∂Bh

∂Ŵ

∂F
(∇Φh)n ·Ψh dS

∀Ψh ∈ V h .
(30)

This is still a difficult nonlinear problem al-
though now finite dimensional. The constraint
as an equation itself, i.e., the discretized vari-
ational form of the nonlinear elasticity equa-
tions, is usually solved by means of a Newton-
Raphson type procedure that relies on succes-
sive linearization of the nonlinear terms. This
linearization suggests a way to treat the bound-
ary force term in the objective of (30). In each
Newton-Raphson step we have to solve a linear
system of the type (25). This system can be re-

9
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cast by a renumbering of the nodal deformations
into the form[

G̃B
0

]
=

[
BB,Φh

0

BI,Φh
0

]
+

[
ABB,Φh

0
ABI,Φh

0

AIB,Φh
0

AII,Φh
0

] [
ΦB
ΦI

]
,

(31)

i.e., we decompose the deformation vector

Φh = (Φ1
1,Φ

2
1,Φ

3
1, . . . ,Φ

1
N ,Φ

2
N ,Φ

3
N )T (32)

into a boundary deformation part ΦB collecting
all the deformation vectors on boundary nodes
of Bh and into a part ΦI of deformation vectors
at the inner nodes. The right-hand side rep-
resents external boundary forces G̃B and zero
external volumetric forces in (25).
Equation (31) can be used to replace the non-

linear constraint in (30):

minimize
Φ

∫
∂Bh

∥∥∥∥∥∂Ŵ∂F (∇Φh)n

∥∥∥∥∥
2

+
k

2

∥∥Φh − Φh,∗
∥∥2

2
dS

subject to
[
G̃B
0

]
=

[
BB,Φh

0

BI,Φh
0

]
+

[
ABB,Φh

0
ABI,Φh

0

AIB,Φh
0

AII,Φh
0

] [
ΦB
ΦI

]
.

(33)

Note that the boundary force term G̃B in the
linearized constraint is essentially a smoothed
version of the boundary force term

∂Ŵ

∂F
(∇Φh)n (34)

in the objective since it is weighted by the finite
element base functions.
Equation (31) is in a form such that it is pos-

sible to eliminate the inner deformations ΦI by
taking the Schur complement with respect to the
block ABB,Φh

0
, i.e.,

G̃B = BB,Φh
0
−ABI,Φh

0
A−1
II,Φh

0
BI,Φh

0
+ SΦh

0
ΦB

(35)
where

SΦh
0

= ABB,Φh
0
−ABI,Φh

0
A−1
II,Φh

0
AIB,Φh

0
. (36)

Utilizing (35) we can rewrite the optimization

problem as

minimize
Φ

K∑
i=1

∥∥∥G̃B,i∥∥∥
2

+
k

2
‖ΦB − Φ∗B‖

2
2 (37)

which is a convex problem. Each G̃B,i, i =
1, . . . ,K, is a force vector in R3 attached to the
i-th of the K boundary nodes. Note that (37)
is unconstrained and that GB,i depends on Φh0
and linearly on ΦB . Also, the dimension of the
(local) optimization problem is significantly re-
duced since it only involves the boundary defor-
mations ΦB . Such condensation techniques have
been used in case of completely linear elasticity
in [11, 46].
The derived local optimization problem (11)

describes a single step in our optimization
scheme and needs three initialization parame-
ters:

• An initial deformation Φh0 : Bh → R3 needs
to be given in order to assemble the tangent
stiffness matrix. We set Φh0 = I before the
first step.

• The spring constant k determining the
strength of the spring force. As the source
gradually deforms into the target during
the iterations the elastic force that resists
the springs increases. Thus, one needs to
increase k as well.

• An initial guess of correspondence Φh,∗ :
S → T determining the direction of the
spring force. This initial guess becomes
more accurate the “closer” the source is to
the target shape.

The last point suggests that it makes sense
to constrain the search for improved correspon-
dences locally to the target shape T . This is
done by increasing the spring force penalty for
deviation from the estimated correspondences
into normal direction during the process and
amounts to replacing the Euclidean metric in
the second term of (37), i.e.,

‖ΦB − Φ∗B‖
2
2 =

K∑
i=1

‖ΦB(xi)− Φ∗B(xi)‖22 (38)

with a Mahalanobis distance that depends on
the corresponding point Φ∗B(xi) ∈ T where xi is
a node of S. Such a local metric is described by
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a symmetric positive definite 3-by-3 matrix

QΦ∗
B(xi) =

 nT

tT1
tT2

 λn 0 0
0 λt 0
0 0 λt

 [ n t1 t2
]

(39)
where n is the unit normal at Φ∗B(xi) ∈ T and
t1, t2 form an orthonormal basis of the tangent
space. We can then write (38) as

‖ΦB − Φ∗B‖
2
Q =

K∑
i=1

‖ΦB(xi)− Φ∗B(xi)‖2QΦ∗
B

(xi)

(40)
where

‖x‖2Q = 〈x,Qx〉 (41)

and Q = diag(Q1, . . . , QK). Decreasing the ra-
tio λn/λt then means increasing the penalty in
normal direction. Combining (40) with (37) and
introducing slack variables gi and e we can re-
formulate (37) as

minimize
gi,e,Φ

K∑
i=1

gi +
k

2
e

subject to
∥∥∥G̃B,i∥∥∥

2
≤ gi , i = 1, . . . ,K

‖ΦB − Φ∗B‖
2
Q ≤ e .

(42)

The first K constraints are already in second
order cone form and the constraint on e can be
reformulated using

‖ΦB − Φ∗B‖
2
Q ≤

1

4

(
(e+ 1)2 − (e− 1)2

)
(43)

into ∥∥∥∥[ 2R(ΦB − Φ∗B)
e− 1

]∥∥∥∥
2

≤ e (44)

where R = diag(Q1, . . . , QK)1/2. The SOCP in
each iteration then becomes

minimize
gi,e,Φ

K∑
i=1

gi +
k

2
e

subject to
∥∥∥G̃B,i∥∥∥

2
≤ gi , i = 1, . . . ,K∥∥∥∥[ 2R(ΦB − Φ∗B)
e− 1

]∥∥∥∥
2

≤ e .

(45)

There are several efficient solvers for SOCPs.
We found that MOSEK [4] is very suitable and
used it through the YALMIP interface [37] with
MATLAB.

4 Implementation and
Results

4.1 The Two-scale Algorithm

In this section we describe our algorithm and
its implementation aspects in detail. As in-
put our method takes two surface meshes S, T .
The source S is assumed to represent the sur-
face of a deformable body. Elastic properties on
S can then be imposed on a volumetric tetra-
hedralization Bh. Our formulation so far as-
sumes that the boundary of the tetrahedraliza-
tion coincides with the surface mesh. Tetrahe-
dral meshes that respect the given surface tes-
sellation S can be obtained, for example, with
TetGen [42]. This, however, has two disadvan-
tages. First, the mesh S is required to be free of
artifacts like self-intersecting triangles or non-
manifold edges. This is, in general, not the case
for meshes obtained from scanned data. Sec-
ondly, a tet mesh with the same boundary as
S will have a large number of degrees of free-
dom that are relevant in our model and although
the optimization procedure is effectively reduced
to the boundary of Bh this is computationally
very expensive. We can remedy this by measur-
ing elastic properties on a coarser scale than the
spring force in (37), as we explain below.
To this end we created a coarse tetrahedral-

ization Bh, typically with 2000 to 3000 tets
(compared to the surface meshes that contained
between 10000 to 50000 triangles). We used the
Iso2Mesh toolbox [22] that wraps code provided
in [19] and [42]. Next, we extracted the bound-
ary mesh of Bh and projected every node in S
onto the mesh ∂Bh, i.e., for each node p ∈ S
we computed the triangle t ∈ ∂Bh with minu-
mum distance and the corresponding projection
point xt ∈ t. We then computed its barycentric
coordinates (u, v, w) in t. The deformation of p,
Φ(p), can then be written as a linear combina-
tion

Φ(p) = uϕhB(x1) + vϕhB(x2) + wϕhB(x3) (46)

of the deformation of the nodes x1, x2, x3 of t.
From now on we will therefore distinguish be-
tween the deformation Φ : S → R3 and the
deformation ϕhB : ∂Bh → R3 of the boundary
of the tet mesh. An equation of the form (46)
applies to each displacement vector Φ(p) for any
p ∈ S. Therefore, any deformation of ∂Bh
can be mapped linearly to a deformation of S.
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Algorithm 1: Sketch of the algorithm
input : Surface meshes S, T and elasticity

parameters
output: Deformations Φ, ϕh, deformed

meshes Φ(S), ϕh(Bh) and forces
G̃B

1 begin
2 Create a tetrahedralization Bh of S;
3 Project the nodes of S onto the mesh

∂Bh and compute the smoothing map
T : C0(∂Bh,R3)→ C0(S,R3) described
in (47);

4 Precompute a local orthonormal
coordinate system at each point q ∈ T
to set up a local metric as described
in (39);

5 Set ϕh0 = I, Φ = I, E = 0 and k = 1;
6 while k ≤ Kmax and E is not

stationary do
7 Compute an initial guess of

correspondences Φh,∗ : Φ(S)→ T ;
8 For each point Φ∗i = Φh,∗(xi) chose

the corresponding metric Q∗Φi
as

in (39);
9 Set l = 1;

10 while l ≤ Lmax do
11 Compute the first order

approximation (31), i.e., the zero
order term and the tangent
stiffness matrix at ϕh0 ;

12 Solve the local optimization
problem (48) with initial
deformation ϕh0 in (49) to obtain
ϕhB,k,Φ, G̃B ;

13 Use the optimized boundary
conditions ϕhB,k : ∂Bh → R3 to
solve for the full deformation
ϕhk : Bh → R3 by means of a
Newton-Raphson solver;

14 Update ϕh0 = ϕhk and l = l + 1;
15 end
16 Save the stored energy E = ϕhkGB of

the deformed body and optionally
various other elasticity measures
(e.g., strain, stress, etc.);

17 Increase the spring constant in (48)
and possibly decrease the ratio
λn/λt in (39);

18 Update k = k + 1;
19 end
20 Return;
21 end

In addition we smooth the interpolated defor-
mation field with a number of damped Jacobi
relaxations using the Laplace-Beltrami opera-
tor ∆S . Note that smoothing the (linearly in-
terpolated) deformation field on S amounts to
smoothing the mesh Φ(S). Interpolation and re-
laxation can be represented by a linear operator
T that acts on the space of continuous functions
C0(∂Bh,R3) and maps into C0(S,R3), i.e., we
can write

Φ = TϕhB . (47)

We note that an alternative approach to ex-
tending a deformation from a coarse to a fine
scale was taken by Kovalsky et al. [30] and
in [48]. There the map T was determined by
a moving least squares optimization, i.e., each
deformation vector Φ(p) on S is the weighted
average of nearby deformation vectors on Bh.
This way local volumetric deformation of Bh in-
duces a local deformation on S whereas we use a
surface deformation to surface deformation ap-
proach.
We can now reformulate problem (45) as fol-

lows,

minimize
gi,e,ϕh

B ,Φ

K∑
i=1

gi +
k

2
e

subject to
∥∥∥G̃B,i∥∥∥

2
≤ gi , i = 1, . . . ,K∥∥∥∥[ 2R(Φ− Φ∗)

e− 1

]∥∥∥∥
2

≤ e

Φ = TϕhB

(48)

where

G̃B =BB,ϕh
0
−ABI,ϕh

0
A−1
II,ϕh

0
BI,ϕh

0
+ Sϕh

0
ϕhB

(49)

in the spirit of (35). This is an optimization
problem on two scales since it measures the
(computationally expensive) deformation cost
for the volumetric body on a coarse scale while
the spring force between source and target shape
is measured on a fine scale. The algorithm is
summarized in Algorithm 1.
Our Matlab implementation was run on a

standard desktop PC with 8GB of RAM and In-
tel Core i7 with 3GHz. The bottleneck routines
such as the assembly of the tangent stiffness ma-
trix were written in C. For SVK materials we
wrote our own FEM code and for Neo-Hookean
materials we modified the source code of Cal-
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Figure 2: Deformation tracking experiment. The deformation sequence consists of 60 frames Tk. In each frame the upper
face of the beam S was twisted until a 360 degree twist was reached. The source S was then matched to each frame Tk while
storing the result Φk(S) and gradually increasing the deformation. We show the result of the matching for four frames
(90◦, 180◦, 270◦ and 360◦ twist) for the Neo-Hookean material model (upper row) and the Saint Venant-Kirchhoff Model
(lower row). The optimized force vectors, measured on the coarse mesh Bh, are shown on the results. The middle row
shows the corresponding target frames (turquoise). The surface mesh S consisted of 14400 triangles while the tetrahedral
mesh Bh on which the forces of the deformation are measured consisted of 1536 tets (567 surface triangles on ∂Bh).

culiX [21], a three-dimensional FEM software
that is available under the GNU General Public
License.

Computing the Initial Guess. Comput-
ing a reasonable initial guess is not straightfor-
ward and is mostly done in a heuristic man-
ner. In the case that S and T only deviate
by small deformations and rotations it is often
reasonable to find initial correspondences sim-
ply by projecting points of the source mesh onto
the target as done in a standard iterative clos-
est point algorithm. In the case of large defor-
mations and/or large rotations, however, near-
est neighbor projection is usually a bad choice.
The limitation of small deformations and rota-
tions can partially be overcome by the use of

shape descriptor like the heat kernel signature
(HKS) [49] or wave kernel signature (WKS) [7].
These descriptors describe the diffusion of heat
at each point or the dispersion in case of the
WKS. Since these descriptors are based on the
spectrum of the Laplace-Beltrami operator they
are invariant under isometries, i.e., surface de-
formations that preserve geodesic distances. For
large isometric or nearly isometric deformations
one can then use a nearest neighbor search in
the descriptor space for the first few iterations
of Algorithm 1 instead of the Euclidean nearest
neighbors. However, the so obtained correspon-
dences can be treacherous, in particular in the
presence of inner symmetries of the shape.
In our work we use a descriptor guided near-

est neighbour search in the Euclidean space. As
a shape descriptor we used the HKS. In the
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first few iterations we seek for each point on the
source shape S k-nearest neighbours and then
we select the one with the best matching HKS.
We further assign a confidence value w ∈ [0, 1]
for the correspondence and use only correspon-
dences with confidence above a certain thresh-
old. Similar weighting procedures have been
used in [30, 16, 39]. The number k of com-
puted nearest neighbors was usually set around
two to four percent of the number of nodes of
the shape. After a few iterations we decreased
k down to one and passed on the confidence
weighting what amounts to standard Euclidean
nearest neighbours.

4.2 Experiments

Material Models. For our experiments we
used the three material models introduced in
Section 2. In the following we will refer to
the small deformation model (17) as the linear
model, to the Saint Venant-Kirchhoff model (15)
as SVK and to the Neo-Hookean model (18) as
NEO.
The first experiment is shown in Figure 2

and is supposed to demonstrate the flexibility
of the two large deformation models (SVK and
NEO). We took a triangular surface mesh S of
a beam and created a sequence of deformations
Tk (which we will call frames). In each frame we
twisted the upper face of the beam while keep-
ing the bottom face fixed until a twist of 360
degree was reached. We then used the frames
Tk as target frames for matching S according
to Algorithm 1. We start from frame k = 1 and
gradually increase the deformation while storing
the resulting deformations Φk(S) until we reach
the last frame. This is a very large deformation
that causes high mechanical stress. Note that
all mechanical quantities are measured with re-
spect to the undeformed configuration S.
Here, we did not perform the smoothing de-

scribed in step 3 in Algorithm1. In the first few
steps both materials performed well. After a
twist of approximately 270 degree we observed
that the SVK model needed more iterations in
each step to converge than the Neo-Hookean
model. Also, the Newton-Raphson solver that
is applied after every single optimization step
needed more iterations to converge to an actual
solution of the elasticity equations. The Neo-
Hookean model, in contrast, showed a substan-
tial computational robustness against this large
deformation. The linear material model, i.e.,

Figure 3: Our algorithm can find rigid motions. The tar-
get meshes T (transparent green, right) are rotations of the
source meshes S (left). The bird mesh was taken from the
SHREC data set. Our tet mesh had approximately 1400 tets
compared to 18000 triangles of the surface mesh.
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Figure 4: Discrete L1-norm of the boundary forces in each
iteration. The search space for the deformations is not con-
fined to rigid motions but the deformation is “not far” from
a rigid motion.

the SVK model with linearized strain (no up-
date of the tangent stiffness matrix in step 11
of Algorithm 1) failed to produce reasonable re-
sults much earlier. However, we do not show the
linear case here since this material model is not
suitable for this large deformation anyway.
This coincides with our expectation since the

SVK model is appropriate for large deforma-
tions but not suitable for large strain in contrast
to the Neo-Hookean model which is suitable for
both.

Invariances. As elaborated in Section 2
for each nonlinear material the deformation
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Figure 5: Several steps of the matching of a source shape (left, gray) to two different articulated human shapes (right,
green) from the SCAPE dataset [5] are shown in the lower and upper row. The approximating volumetric mesh is shown
on the left (orange) as well as the force vectors measured on the volumetric mesh. The force vectors are scaled for better
visibility. The surfaces have approximately 25000 triangles. Our volumetric tessellation had approximately 2000 tets.

force measured by the second Piola-Kirchhoff
stress (7) is invariant under rotations. How-
ever, in our numerical scheme we optimize a
smoothed version of forces derived from the
first Piola-Kirchhoff stress which is, in general,
not invariant under rotations. Nevertheless, the
magnitude of the forces is invariant but not the
direction. For pure rotations the force is zero.
Hence, we would like the matching algorithm to
find pure rotations and to return a zero force.
Figure 3 shows two examples. The initial guess
of correspondences for the bird was made and
updated using a nearest neighbour search in de-
scriptor space in the first few iterations of our
algorithm. For the rotated beam we simply used
Euclidean projections since the HKS is “less de-
scriptive” due to the high number of symmetries
and hence might lead to an unreasonable initial
guess.
The graphs in Figure 4 show the norm of the

optimized boundary force in each iteration of
the optimization. One can clearly see that in
the first few iterations the optimized boundary
force is not zero. This is to be expected since
we do not restrict the search space of deforma-

tions to rotations. In the last few iterations the
force is close to zero implying that our algorithm
found a rigid motion of Bh. The slightly incor-
rect matching of the rotated surface mesh of the
bird, as seen in Figure 3 (bottom right), is due
to the interpolation of the deformation of Bh
to S and can be remedied by taking a finer tet
mesh at the cost of computation time.

Last, we should mention that in case of a
linear material model (Hooke’s law) the forces
are not invariant under rotations but under in-
finitesimal rotations. These maps are the gen-
erators of the rotation group, i.e., they form the
Lie algebra of SO(3), and have skew symmetric
derivatives. In two dimensions the effects of this
invariance were demonstrated in [46]. Here, we
will refrain from showing this.

More Experiments. Figure 5 shows two ex-
amples of matching human poses. The models
were taken from the SCAPE dataset [5]. Both
poses were aligned using the SVK model. Note
that the SCAPE dataset is nearly isometric and
hence the HKS is nearly invariant under change
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Figure 6: Examples from the SHREC dataset [26]. The source shapes are shown in the top row. We compare three
material models: the linear model, the Saint Venant-Kirchhoff model (SVK) and the Neo-Hookean model (Neo). Several
manually labeled landmark points of the source meshes are shown on the deformed source mesh and then compared to
their corresponding landmarks in the target shapes (green). The SHREC surface meshes we used consist of 9000 to 14000
triangles and the tetrahedral meshes of 1600 to 2700 tets.

of poses. This facilitates the nearest neighbor
search in the first few iterations of our algo-
rithm. Note that the external force found by
our algorithm is sparse and mostly acts on the
articulated parts of the model.
Examples of matching taken from the

SCHREC dataset [26] are shown in Figure 6.
Note that this dataset consists of usually non-
isometric instances within each object class.
Still, our algorithm produces good results.
Two examples taken from the TOSCA

dataset [13] (left and right poses) are shown
in Figure 7 from two different viewpoints (top
and bottom). We used the SVK and the linear
model, i.e., the SVK model without update of
the tangent stiffness matrix (Hooke’s law), for
each pose. Both results exhibit similar quality
whereas the SVK model exhibits deformation
forces that are higher in magnitude. This is in
line with the comparison of the SVK model and
the linear model in the experiment shown in Fig-
ure 6.
The experiments performed so far have been

carried out on closed surfaces without boundary.

Linear SVK NEO
Birds

Norm of forces 6 14 2
# Iterations 14 35 36

Planes
Norm of forces 6.01 9.4 7.9
# Iterations 17 21 36

Pliers
Norm of forces 0.6 4.7 0.8
# Iterations 7 7 11

Table 1: Comparison of the three material models used on
the examples of Figure 6. We show the sum of the norms of
the force vectors and the number of iterations

However, the method is not restricted to closed
surfaces provided one can create a volumetric
mesh that represents the given object. To create
the volumetric mesh it is usually necessary to fill
holes. This, however, is the only step at which
we use the closed surface. The rest of the steps
follows the steps described in Algorithm 1. We
demonstrate this in Figure 8. There we took
two models of teeth from the anatomical dataset
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Figure 7: Two examples from the TOSCA dataset [13] from two different viewpoints (upper and lower row). The source
(middle) is matched to the targets (green). Each shape in the TOSCA dataset consists of approximately 55000 triangles.
The volumetric mesh we used consists of 1500 tets. Both results are of similar quality whereas the SVK model needed
forces of higher magnitude.

of [9] which exhibits quite large deformations.
The deformation of the underlying tetrahedral
mesh Bh is shown in Figure 9.

5 Discussion

In this work we propose a new ICP-like method
in combination with a nonlinear regularizer for
three-dimensional surface matching. The idea is
to regard the surface as the surface of a physical
body that can undergo elastic deformation. Our
approach to finding a reasonable deformation is
led by the assumption that the forces acting on
the body are of a simple nature, i.e., we assume
the forces are sparse, isotropic and act on the
boundary only. This is, we believe, a reasonable
assumption in many scenarios of shape deforma-
tion such as the change of a human pose.
We model the physical body as a hyperelas-

tic material. The underlying equations, a non-
linearly coupled system of PDEs, is solved by
means of a conformal FEM and needs to be
supplemented with appropriate boundary condi-
tions. We provide pure Dirichlet boundary con-

ditions, i.e., the boundary deformation. This
boundary deformation is in general unknown
but one can give an initial guess. This initial
guess induces a spring force between the source
and the target that is supposed to drive the de-
formation of the source. We then use our pro-
posed method to improve the initial guess such
that the forces that act on the deformed body
are sparse and isotropic according to the prior.
This is done using the FEM which allows us to
split the tangent stiffness matrix. The splitting
we employ allows to connect boundary forces on
the deformed body and boundary deformation
of the source. This splitting generalizes the lin-
ear condensation methods that have been used
in [11, 46] to the nonlinear case.
The optimization problem to be solved is non-

linear and computationally complex, depending
on the shape and on the material model. We
show how to approximate this problem by a
sequence of convex problems that is solved in
an iterative fashion with low computational de-
mands. The convexification is done by succes-
sive linearization of the material model. The
computational complexity is lowered by approx-
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Figure 8: Two experiments performed on tooth shapes taken from the dataset of anatomical shapes of [9] (top and bottom
row). The meshes have disk topology and the deformations are nonisometric and exhibit large strain. Several intermediate
steps of the matching procedure of the sources (left, gray) into the target (right, green) are shown. We used the Neo-
Hookean model. Each mesh we used has about 10000 triangles. The volumentric meshes that we created had about 1000
tets.

imating the source surface with a coarser tetra-
hedral mesh. A deformation of the boundary
of the volumetric tetrahedral mesh then natu-
rally induces a deformation of the source surface
by means of interpolation and smoothing. This
amounts to a two-scale algorithm since the elas-
tic properties are measured on the coarse scale
while the provided initial guess is a map on the

Figure 9: The volumetric mesh in rest state approximating
the source shape shown in the top row of Figure 8 is shown
on the left. The right side shows the deformed mesh after
matching including the conformal distortion of each tet.

(fine) source surface. Reducing the optimization
problem to the boundary of the coarse scale vol-
umetric mesh further reduces the dimensionality
of the problem significantly.
Our method often delivers good results but

can fail in certain cases. The estimated corre-
spondences that need to be given before each it-
eration of the optimization is, at least in the first
few iterations of our algorithm, usually com-
puted by a Euclidean k-nearest neighbor search.
Out of these k nearest neighbors we pick the one
with best matching HKS. In case of strongly
non-isometric deformations or shapes with a
high amount of intrinsic symmetry this will re-
sult in very unreasonable initial correspondences
and the algorithm will get stuck in a local min-
imum. The case k = 1 is the usual Euclidean
nearest neighbor search and will give unreason-
able correspondences in case of large deforma-
tions and/or rotations even if the deformation
is isometric.

Another drawback is due to the coarse vol-
umetric meshes. For example, a pure rotation
of a coarse mesh does not necessarily induce a
pure rotation of a fine mesh. The reason for
this is that we essentially map a linearly inter-
polated map of the coarse mesh to the fine scale
as described in Section 4.1 without incorporat-
ing information in normal direction. This effect
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is shown in Figure 10. Also, smoothing the de-
formation after interpolation can smear features
such as corners of the deformed surface in an
undesired way. Taking a finer volumetric mesh
reduces this effect.

Figure 10: The effect of the interpolation of a pure rotation
of the coarse mesh on the fine surface mesh. We chose a
rotation R ∈ SO(3) and constructed the map T according
to equation (47). The rotated coarse mesh (orange) is shown
in the upper row. The bottom row shows the effect of the
interpolated rotation on the fine mesh. We compare this to
the rotated fine mesh (turquoise).

Furthermore, the method is not guaranteed to
avoid element flipping due to the linearization
and can exhibit high conformal element distor-
tion, see Figure 9. Methods dealing with this
problem in two and three dimensions can be
found in [30, 36, 44] and can be integrated into
our framework.
Finally, the computed boundary forces that

are responsible for the shape change can be
made invariant under rigid motion by a pull-
back to the undeformed configuration. Hence,
we believe, that they can serve as a comparison
measure for different deformations of the same
object since they measure how “difficult” it is to
achieve the observed change.
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